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Overview
NOT: easy to digest introduction for practitioners
instead: theoretical foundations of SEM
many formulas, using a lot of the ’Greeks’, i.e. Greek
symbols used to denote quantities appearing in SEM
models
aims to make the econometrically trained learn what SEM
’theoretically’ is
aims to explain why (one branch of) SEM is called
’covariance-based’
tries to gradually consider increasingly complex models,
moving from simple linear regression models to SEM
models
NOT: detailed discussion of all aspects of SEM
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Recap: Simple Linear Regression I

the simple linear regression models looks as follows:

y = α + βx + u,

where y , x , u are random (!) variables which are called,
respectively,

I regressand, dependent variable, or endogeneous variable: y
I regressor, independent variable, exogeneous variable: x
I error term, disturbance: u

α and β are unknown parameters which describe,
respectively,

I the intercept of the regression line: α
I the slope of the regression line: β
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Recap: Simple Linear Regression II

given data (y1, x1), . . . , (yT , xT ) (with T denoting the sample
size), α and β are usually estimated by OLS, with formulas

I β̂ =

T∑
t=1

(xt−x)(yt−y)

T∑
t=1

(xt−x)2
=

sxy

s2
x

I α̂ = y − β̂x

notice that β̂ can be calculated using demeaned data
(xt − x , yt − y ) only, while α̂ depends on the means y , x of
y , x (as well as β̂)
therefore, if one is only interested in β, the parameter
describing the relation between y and x , then one may
calculate the estimate β̂ using the demeaned versions of x
and y
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Recap: Multiple Linear Regression I

the multiple linear regression model looks as follows:

y = α + β1x1 + . . . + βnxn + u,

where y , x1, . . . , xn are random variables which are called,
respectively,

I regressand, dependent variable, or endogeneous variable: y
I regressors, independent variables, exogeneous variables:

x1, . . . , xn
I error term, disturbance: u

βi (i = 1, . . . ,n) determines by how much y is expected to
change if xi changes by one unit and all other regressors
stay unchanged
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Recap: Multiple Linear Regression II

given data (y1, x11, . . . , xn1), . . . , (yT , x1T , . . . , xnT ) (with T
denoting the sample size), α, β1, . . . , βn are usually
estimated by OLS, satisfying the following formulas:

I

β̂1
...
β̂n

 =

s11 s12 · · · s1n
...

...
. . .

...
sn1 sn2 · · · snn


−1s1y

...
sny

,

I α̂ = y − (β̂1x1 + . . .+ β̂nxn), with

I sij := 1
T

T∑
t=1

(xit − xi)(xjt − xj) (i , j = 1, . . . ,n),

I siy := 1
T

T∑
t=1

(xit − xi)(yt − y) (i = 1, . . . ,n).
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Recap: Multiple Linear Regression III

notice that β̂1, . . . , β̂n can be calculated using demeaned
data (xit − xi (i = 1, . . . ,n), yt − y ) only, while α̂ depends on
the means y , xi (i = 1, . . . ,n) of the variables (as well as
β̂1, . . . , β̂n)
therefore, if one is only interested in regression coefficients
β1, . . . , βn, the parameters describing the relations between
the regressand y and the regressors x1, . . . , xn, then one
may calculate the estimates β̂1, . . . , β̂n using the demeaned
versions of regressand and regressors
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Simultaneous Equations I

we can generalize the multiple linear regression model with
respect to the number of dependent variables by allowing
more than one dependent variable
such models are called ’simultaneous equation models’,
they look as follows (with m denoting the number of
dependent variables):

y1 = α1 + β12y2 + . . . + β1mym + γ11x1 + . . . + γ1nxn + u1

y2 = α2 + β21y1 + β23y3 + . . . + β2mym + γ21x1 + . . . + γ2nxn + u2

...
ym = αm + βm1y1 + . . . + βm,m−1ym−1 + γm1x1 + . . . + γmnxn + um
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Simultaneous Equations II

denoting y := (y1, . . . , ym)′, x := (x1, . . . , xn)′,
u := (u1, . . . ,um)′, α := (α1, . . . , αm)′,

B :=


0 β12 . . . . . . β1m

β21 0 β23 . . . β2m
... . . . . . . . . . ...

βm−1,1
. . . . . . βm−1,m

βm1 . . . . . . βm,m−1 0

 ∈ Rm×m,

Γ := (γij)i=1,...,m,j=1,...,n ∈ Rm×n, this can be written in compact
form:

y = α + B y + Γ x + u
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Simultaneous Equations III

estimating simultaneous equation models, though typically
not done using OLS, usually results in α̂ = y − B̂ y − Γ̂ x ,
while the estimates B̂ and Γ̂ can be calculated using the
demeaned data y − y and x − x
y = α + B y + Γ x + u is called the structural form, while

y = (I − B)−1α︸ ︷︷ ︸
α̃

+ (I − B)−1Γ︸ ︷︷ ︸
Γ̃

x + (I − B)−1u︸ ︷︷ ︸
ũ

is called the reduced form
y1, . . . , ym are called endogeneous, x1, . . . , xn are called
exogeneous
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SEM or Simultaneous Equations with Latent
Variables I

an SEM model is ’simply’ a simultaneous equations model
where, unfortunately, the endogeneuos and exogeneous
variables are latent, i.e. not observable
in SEM models,

I the m (latent) endogeneous variables are usually called η
I the n (latent) exogeneous variables are usually called ξ
I the m-dimensional error term is usually called ζ
I the relations between the latent variables are modeled by

η = B η + Γ ξ + ζ or η = αη + B η + Γ ξ + ζ,

with the assumptions E(ζ) = 0, I − B non-singular, and ξ
uncorrelated to ζ. The intercept term αη is only included
when means of the latent variables are to be considered,
too.
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SEM or Simultaneous Equations with Latent
Variables II

the so-called structural equation η = (αη+)B η + Γ ξ + ζ
must be accompanied by so-called measurement equations
which relate the latent variables ξ and η to their observable
counterparts x and y :

x = Λx ξ+δ, y = Λyη+ε, or x = αx +Λx ξ+δ, y = αy +Λyη+ε,

where
I x and y , often called indicators (for ξ and η), consist of q and

p observable variables, respectively,
I Λx ∈ Rq×n and Λy ∈ Rp×m are matrices which contain the

so-called factor loadings
I δ and ε are q- and p-dimensional error terms.
I the intercept terms αx and αy are included only if means are

to be considered, too.

Structural Equation Modeling (WS 18/19) An Econometrician’s Introduction Slide 12



SEM or Simultaneous Equations with Latent
Variables III

all error terms are assumed to have zero mean
usually, ξ, x , η, y are also assumed to have zero mean: in
this case, no intercept terms appear in the above equations,
and demeaned data are used (this does not hold, though,
for instance for so-called multi-group or latent curve models)
it is assumed that both ε and δ are uncorrelated with ζ and
ξ, and that the two error terms ε and δ are uncorrelated
often, the covariance matrices are called Φ (for ξ), Ψ (for ζ),
Θε (for ε), and Θδ (for δ)
however, the notations Σξ, Σζ , Σε, and Σδ are much more
intuitive and will be used in the sequel
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Summary of SEM Equations, Quantities, and
Assumptions

structural equation: η = (αη+)B η + Γ ξ + ζ
measurement equations:
x = (αx +)Λx ξ + δ, y = (αy +)Λyη + ε
ξ: n latent exogeneous random variables with covariance
matrix Σξ

η: m latent endogeneous random variables
x , y : q- and p-dimensional observable random variables,
indicators of ξ and η
ζ, δ, ε: m-, q-, p-dimensional error terms with covariance
matrices Σζ , Σδ, Σε

it is assumed that Σξζ = 0, Σεδ = 0, Σξε = 0, Σξδ = 0,
Σζε = 0, Σζδ = 0
fixed, but unknown quantities (model parameters): B, Γ, Λx ,
Λy ; when means are considered, additionally αη, αx , αy
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Fundamental Theorem of SEM I
under the assumptions stated above,

I the covariance matrix Σx of the latent exogeneous variables’
observed indicators x is given by:

Σx = Λx ΣξΛ
′
x + Σδ

I the covariance matrix Σxy between the latent exogeneous
variables’ obeserved indicators x and the latent
endogeneous variables’ observed indicators y is given by:

Σxy = Λx ΣξΓ
′(I − B′)−1Λ′y

I the covariance matrix Σx of the latent endogeneous
variables’ observed indicators y is given by:

Σy = Λy (I − B)−1 (ΓΣξΓ
′ + Σζ

)
(I − B′)−1Λ′y + Σε
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Fundamental Theorem of SEM II
the unknown parameters, i.e. the structural parameters
contained in B and Γ, the factor loadings contained in Λx

and Λy , as well as the variances and covariances contained
in Σξ, Σζ , Σδ, and Σε are determined such that the
differences between the model-implied covariances
delivered by the fundamental theorem and the empirical
estimates Σ̂x , Σ̂xy , and Σ̂y are as small as possible
estimating the parameters by matching empirical and
model-implied covariances can be done by using the
empirical covariances of the observed variables only,
therefore software packages often do not only accept raw
data, but can also simply be given the empirical covariances
for these reasons, one speaks of ’covariance-based’
estimation of SEM models
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