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Abstract

We present a model of opinion formation where individuals repeatedly engage
in discussion and update their opinion in a social network similarly to the DeGroot
model. Abstracting from the standard assumption that individuals always report
their opinion truthfully, agents in our model interact strategically in the discussion
such that their stated opinion can differ from their true opinion. The incentive to
do so is induced by agents’ preferences for conformity. Highly conforming agents
will state an opinion which is close to their neighbors’ while agents with low level
of conformity may be honest or even overstate their opinion. We model opinion
formation as a dynamic process and identify conditions for convergence to consensus.
Studying the consensus in detail, we show that an agent’s social influence on the
consensus opinion is increasing in network centrality and decreasing in the level of
conformity. Thus, lower conformity fosters opinion leadership. Moreover, assuming
that the initial opinion is a noisy signal about some true state of the world, we
consider the mean squared error of the consensus as an estimator for the true state
of the world. We show that a society is “wise”, i.e. the mean squared error is smaller,
if players who are well informed are less conform, while uninformed players conform
more with their neighbors.

Keywords: consensus, social networks, conformity, eigenvector centrality, wisdom of the
crowds
JEL: C72, D83, D85, Z13

1



1 Introduction

If we could look into each other’s heads, we would know what everybody thinks. Since this
is not possible, we have to rely on what people say or do. Ignoring this issue, models of
opinion formation have worked with the assumption that people do not misrepresent their
opinion. They provide conditions for the emergence of consensus of opinions (DeGroot,
1974), identify opinion leaders (Friedkin, 1991), and even show that large societies can be
“wise” in a well defined sense (Golub and Jackson, 2010). We challenge these results by
incorporating the possibility that stated opinions differ from true opinions. This requires
additional conditions to guarantee consensus, it affects who is an opinion leader, and it
can undermine or foster the wisdom of societies, as we will show.

Individuals’ opinions are important for several reasons. Majority opinions on political
issues set the political course. The demand for a consumer product depends on the opin-
ions about the quality of this product and about the integrity of its producing company.
Moreover, opinions on the relative importance of issues decide upon the agenda of actions
or on the allocation of a budget – be it within a company, within a government, or some
other group of decision makers. Given the importance of opinions it is natural to ask
where they come from. The cognitive process of combining pieces of information to an
opinion might not be simple to understand. However, it seems beyond dispute that a
person’s social network, i.e. the people she talks and listens to, plays a central role in
this process. Listening to opinions of others can simply be the source of new pieces of
information which are combined with what has been known previously. A seminal model
for this situation (i.e. the formation of opinions) is discussed by DeGroot (1974). In
this so-called DeGroot model agents are assumed to update their opinion according to a
weighted average of the current opinions. Thereby the weights of averaging are collected
in an exogenously given learning matrix, which has the interpretation of a social network.

While the assumption of this form of näıve updating has been extensively discussed,
motivated, and justified (Friedkin and Johnsen, 1990; DeMarzo et al., 2003), this is not
true to the same extent for another crucial assumption of the DeGroot model framework:
it is assumed that actors do not misrepresent their opinion; in other words, stated opinions
are assumed to coincide with true opinions. This is certainly an important first step
in analyzing opinion dynamics, but beyond that its justification is on shaky grounds.
DeMarzo et al. (2003) argue that this assumption is problematic in contexts of persuasion,
where actors have a material interest in influencing others’ opinions. But even if there is no
material incentive to persuade, people often misrepresent their opinions. In the famous
study of Asch (1955), subjects wrongly judged the length of a stick after some other,
allegedly neutral, participants had placed the same wrong judgment. Follow-up studies
have shown that this effect is weaker if the subjects do not have to report their judgments
publicly (Deutsch and Gerard, 1955). The authors argue that two forms of social influence
can be observed in this study. While informational social influence describes the updating
of opinions according to what others have said, normative social influence describes the
behavior of stating an opinion that fits to the group norm.1 Meanwhile, the concepts

1Deutsch and Gerard (1955, p. 629) further explain: “Commonly these two types of influence are
found together. However, it is possible to conform behaviorally with the expectations of others and say
things which one disbelieves but which agree with the beliefs of others. Also, it is possible that one will
accept an opponent’s beliefs as evidence about reality even though one has no motivation to agree with
him, per se.”



of informational and normative social influence have become a cornerstone in analyzing
social influence, e.g. Ariely and Levav (2000, p. 279) call it the “primary paradigm”.

In terms of this paradigm, the DeGroot model of opinion formation is a model of
informational social influence. It models how agents update their opinions according
to a learning matrix (cf. Golub and Jackson, 2010). It is not a model of normative
social influence, as long as stated opinions must not differ from true opinions. Models
of normative social influence are also called models of conformity (e.g. Bernheim, 1994).
They include a utility component that depends on the difference of the behavior of the
focal actor and the behavior of some peer group or “reference group” (Hayakawa and
Venieris, 1977). In particular, choosing a behavior that is different from the behavior of
others might cause disutility, an effect that is called conformity (Jones, 1984).

It is argued that normative social influence is based on the level of identification
with the peer group (Hogg and Abrams, 1988). Distinguishing between identification,
non-identification and disidentification leads to three types of normative social influence:
conformity, independence and counter-conformity/anti-conformity.2 While instances of
conformity are ubiquitous, examples for counter-conforming behavior are more difficult
to find.3 Hornsey et al. (2003) have run lab experiments where subjects could report their
willingness to privately or publicly express and support their opinion. For subjects with a
strong moral basis on the topic, the treatment of suggesting that a majority of the other
subjects disagreed slightly increased the willingness to publicly express the opinion. As a
special case of counter-conforming behavior one can consider exaggerating and overstating
the own opinion to distinguish oneself from a group. A stylized fact on normative social
influence is that people differ in the way and their degree of being influenced. The degree
of conformity can be considered a personality trait, but it might also depend on the topic
under discussion.

In this work, we present a model that incorporates both informational and normative
social influence. The model consists of a sequence of discussion rounds. In each discussion
round agents state an opinion depending on their true opinion and on their type, where
types include conformity, counter-conformity, and honesty. From one discussion round to
the next, learning takes place in the sense that agents update their opinion according to
a learning matrix. In the special case where every agent is of the honest type, our model
coincides with the classic DeGroot model which will serve as a benchmark throughout the
paper.

We use this model to investigate how opinions evolve given that actors may misrep-
resent their opinion in a conforming or counter-conforming way. We first analyze the
two-player case which illustrates that dynamics can diverge, converge or cycle. It turns
out that a sufficiently conforming type will reach consensus with any other player. We
then show more generally that excluding counter-conforming types is sufficient to guar-
antee convergence of opinions to consensus.

Assuming convergence, we then ask how opinion leadership depends on conformity.
This research question is motivated by empirical research on identifying opinion leaders
(cf. Katz and Lazarsfeld, 2005). A personality trait that seems strongly related to the

2Cf. table 8.2. in Hogg and Abrams (1988).
3Many findings on counter-conformity concern the decision on consumption goods. Especially con-

cerning fashion and lifestyle products, a desire for “uniqueness,” that induces choices different from a
majority of others, has been discussed (Snyder and Fromkin, 1980; Tian et al., 2001).
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concept of conformity is called public individuation, i.e. the extent to which “people
choose to act differently than others” (Maslach et al., 1985). This personality trait has
been found to discriminate opinion leaders from followers (Chan and Misra, 1990). As
any model following DeGroot (1974), our model provides an intuitive notion of opinion
leadership. Opinion leadership or power of any agent can be measured by the influence of
her initial opinion on the long-run (consensus) opinion of her group. As one of the main
results, we show how power is determined by eigenvector centrality (Bonacich, 1972;
Friedkin, 1991) with respect to the learning matrix and the distribution of conformity in
the society. It turns out that conformity does not affect power if all agents have the same
level of conformity. In a society with heterogeneous levels of conformity, power depends on
each agent’s conformity and centrality in relation to all others’ conformity and centrality.
Comparative statics reveal that an agents’ power is decreasing in own level of conformity,
increasing in other agents’ level of conformity and increasing in network centrality. Thus,
less conformity fosters opinion leadership, while a higher degree of conformity undermines
it.

Finally, we consider a context where there is a true state of nature and the individuals’
initial opinions are unbiased noisy signals which may differ with respect to signal precision
(the inverse of the variance). The question is how the misrepresentation of opinions affects
the accuracy of information aggregation (the society’s “wisdom”). Generically, it is the
case that some agents are “too” powerful in comparison to their signal precision, while
others are not powerful “enough.” Using comparative statics we observe that for the goal
of higher accuracy of the consensus opinion it would be helpful if people with a low signal
precision (relative to their power) were more conforming, while people with a high signal
precision (relative to their power) should be less conforming.

There is a wide branch of literature that is related to our work. Our model roots in the
pioneer work of French (1956), Harary (1959), and DeGroot (1974). Friedkin and Johnsen
(1990) provide a framework that subsumes former models as special cases. It refers not
only to the pioneers mentioned above but also to the (sociological) literature on social
influence and power (see also Friedkin, 1991). A particular feature of Friedkin (1991) is
that opinions can be updated in every period not only according to the current profile of
opinions but also according to the own initial opinion. Another variation of the classic
model is to let agents only be affected by opinions that are not too different from the own
opinion (Hegselmann and Krause, 2002). Moreover, Lorenz (2005) allows the learning
matrix to vary over time and identifies general conditions for convergence. Under some
conditions, convergence to consensus is also robust if updating is noisy, as Mueller-Frank
(2011) shows. DeMarzo et al. (2003) allow the self confidence to vary over time. Besides
their results, a particular contribution of DeMarzo et al. (2003) is the extensive discussion
of the model: the authors justify the underlying rationality assumptions of the model
and also provide several economic applications. Flache and Torenvlied (2004) study a
variation of the classic model where actors anticipate the difference between own opinion
and group decision (“frustration”) and adapt learning weights (“salience”) accordingly.
Golub and Jackson (2010) discuss necessary and sufficient conditions for convergence in
the classic model and provide conditions for the “wisdom of crowds” in the sense that the
consensus opinion of a society comes arbitrarily close to the truth when letting the size of
the society grow. Buechel et al. (2011) study the transmission of cultural traits from one
generation to the next one and thereby introduce a generalization of the DeGroot model
that also incorporates strategic interaction. While that model shares some properties of
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this present model, there are several crucial differences between the two: Buechel et al.
(2011) consider a different updating rule and they restrict attention to a behavior that
might be interpreted as counter-conformity.

Besides these highly related works, there are several contributions to similar research
questions, but within different model frameworks. While their discussion is beyond the
scope of this paper, we refer the reader to the following few prominent examples: models
of social learning (Bikhchandani et al., 1992; Ellison and Fudenberg, 1993, 1995; Bala and
Goyal, 1998, 2001), cooperative models of social influence (Grabisch and Rusinowska,
2010, 2011), and a model of strategic influence (Galeotti and Goyal, 2009). These models
investigate social influence on a discrete choice of actions, such as the choice of one out
of two technologies, as opposed to continuous opinions.

The rest of this paper is organized into four sections. In Section 2 we introduce the
model. Before we present the main results (in Section 4), we discuss the two-player case
(Section 3). Section 5 addresses the wisdom of a society and in Section 6 we conclude.

2 Model

We first present the set-up of opinion formation and then introduce misrepresentation of
opinions.

2.1 Basic Setup

There is a set of agents/players N = {1, 2, ..., n} who interact with each other. A learning
structure is given by a n × n row stochastic matrix T , i.e. tij ≥ 0 for all i, j ∈ N and∑n

j=1 tij = 1 for all i ∈ N . This learning matrix represents the trust that the players put
on the opinions of each other and it can be interpreted as a weighted and directed social
network. We say that there is a directed path from i to j in this induced network, if there
exists i1, ..., ik ∈ N such that i1 = i and ik = j and tilil+1

> 0 for all l = 1, ..., k − 1 which
is equivalent to (T k)ij > 0.

We study a dynamic model, where time is discrete t = 0, 1, 2... and at the beginning
each player has a predefined opinion xi(0) concerning some topic. The opinions of all
players at time t are collected in x(t) ∈ Rn. In every period, players talk to each other
and update their opinions according to the matrix T . In the classical DeGroot model
players exchange opinions such that the opinions in period t+ 1 are formed by x(t+ 1) =
Tx(t) = T t+1x(0) (DeGroot, 1974). The motivation for such a model is that players
always report their true opinions and the next period’s opinion of each player is formed
as a weighted average of own and others’ opinions according to the learning matrix T.
Concerning the assumption of honesty in opinion formation, DeMarzo et al. (2003) note:

For simplicity, we assume that agents report their beliefs truthfully. [...] We
are thus ignoring issues of strategic communication.4

We relax this assumption. In particular, a player i ∈ N may choose to express some
opinion si(t) ∈ R in period t.5 We will call this the stated/expressed opinion.

4See DeMarzo et al. (2003), p. 3, footnote 9.
5In principle, it is possible to restrict the strategy space to some interval, say [0, 1]. However, assuming

the strategy space R, we do not have to deal with boundary conditions when calculating Nash equilibria.
This makes the analysis more convenient.
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A central assumption of our approach is that a player cannot observe the true opinions
of the others but only their expressed opinions. Since each player knows her own true
opinion xi(t), we get that player i′s next period’s opinion is formed by xi(t+1) = tiixi(t)+∑

j 6=i tijsj(t), where the weights tij are the individual interaction weights, as in the classical
model by DeGroot (1974). This holds for all players i ∈ N and, thus, the updating process
becomes

x(t+ 1) = Dx(t) + (T −D)s(t), (1)

where D is the n× n diagonal matrix containing the diagonal of T.

2.2 How Players Misrepresent

There are various motives to misrepresent the own opinion. Not only strategic considera-
tions of persuasion play a role, but also personality traits or emotional motives. We focus
on two very basic features of human behavior: honesty and (non-)conformity. Stating
a different opinion from one’s true opinion (i.e. being dishonest) might cause discomfort
(e.g. Festinger, 1957). Secondly, there is ample evidence that many people feel discomfort
from stating an opinion that is different from their peer group’s opinion (e.g. Asch, 1955;
Jones, 1984). While certainly many people feel this type of normative social influence,
this need not be true for all people—there are even some who enjoy stating an opinion
that is far away from what others say (Hornsey et al., 2003).

In both cases, conformity and counter-conformity, a methodological challenge is in-
volved. An individual’s choice of behavior depends on the group norm, which is some
aggregate of individual choices. Hence, we are in a situation of strategic interaction,
which is best dealt with by using a game-theoretic approach. Therefore, we will model
the choice of stated opinion in each round as a non-cooperative game that is played
between actors.6

To formalize these ideas, suppose that y′i is a 1×n vector with yij ≥ 0 for all j = 1, ..., n
and

∑n
j=1 yij = 1 such that the subjective average of expressed opinions that player i wants

to conform with is given by qi(t) = y′is(t). Since player i′s opinion should not matter in
this average, we let yii = 0. Here, we assume that the subjective average y′i is given by the
original learning matrix T , i.e. those players who player i is connected with are also those
players i wants to conform/non-conform with.7 In particular, we let yij = tij/(1 − tii)
if j 6= i and yii = 0. An interpretation of this assumption is that qi is the group norm
as perceived by player i. Throughout the paper we will assume that tii < 1 for technical
reasons.8 When combining the incentive to conform with the reference group and the
incentive to be honest, we assume that the utility of a player is additively separable into
these two parts and that for each part the disutility takes a quadratic form. Thus, the

6While game-theoretic reasoning is often based on the assumptions of complete information and full
rationality, those assumptions are not necessary in our game. We will have a unique and strict Nash
equilibrium, which is also attractive in the sense that a sequence of boundedly rational adaptations of
stated opinions would lead to this stable profile of behavioral choices.

7To study more general definitions of the relevant reference group yi is a task for further investigation.
8If tii = 1, then yii, and thus qi, is not well-defined, i.e. for a player that does not learn from others

and does not interact with others, the relevant peer group opinion is undefined. A simple way to fix
this issue is to assume that those agents are honest, i.e. si(t) = xi(t). The case tii = 1 is not hard to
solve because xi(t) = xi(0) for any t. However, allowing for this case would considerably complicate the
notation (because the matrix T −D is not invertible then).
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utility of some agent i depends on the distance of true opinion to stated opinion as well
as on the distance of stated opinion to perceived opinion in the following way:

ui(s(t)|xi(t)) := −αi (si(t)− xi(t))2 − βi (si(t)− qi(t))2 , (2)

where αi ∈ R++ and −αi
2
< βi ∈ R. For this utility representation αi and βi display

the relative importance of the preference for honesty and the preference for conformity.
The assumption αi > 0 means that there is at least some incentive to report the opinion
truthfully (i.e. some cost of dishonesty). Note that for βi > 0 the second term is de-
creasing in distance between si and qi incorporating discomfort of stating an opinion that
differs from the benchmark opinion. This induces an incentive to conform. For βi < 0
the second term is increasing in distance inducing an incentive to counter-conform. If
βi = 0, then a player has no incentive to misrepresent her opinion and thus will always
report her opinion truthfully, this behavior can also be considered as non-conformity or
independence. Further, we assume that βi > −αi

2
for all i ∈ N mainly for technical

reasons. This assumption restricts the extent of counter-conformity to a certain bound
which seems weak enough to cover all reasonable cases and it guarantees that a utility
maximum exists.9 In some applications it may make sense to only allow for βi ≥ 0,
since counter-conformity can be excluded and fully truthtelling can also be interpreted
as non-conformity. However, we will see in the subsequent analysis that βi < 0 will lead
to an overshooting (or exaggerating) of own opinion and thus induces a behavior that is
similar to attempts of convincing other players to the own opinion, and is, hence, also an
interesting object to study.

The discussed assumptions determine the behavior of an agent in each period. We
can think of one period of time as a discussion round. For each discussion round – which
may be thought of as repeated exchange of opinions – players try to optimize against
the expressed opinion of others. In particular, we assume that players find mutual best
replies to each other’s strategies, i.e. play a Nash equilibrium, at the end of each discussion
round. We show in Proposition 1 that a Nash equilibrium exists and is unique for every
opinion profile x ∈ Rn. For a player i ∈ N with opinion xi(t) in period t and other players’
expressed opinions s−i(t) = (sj)j 6=i(t), the best reply is given by the first order condition,
si(t) = αi

αi+βi
xi(t) + βi

αi+βi
qi(t). Defining δi := βi

αi+βi
, we get

si(t) = (1− δi)xi(t) + δiqi(t),

i.e. the stated opinion is a combination of true opinion and perceived opinion. Note that
with the assumptions αi > 0 and βi > −αi

2
we have δi ∈ (−1, 1). Since δi fully describes

the behavior of player i, there is no need to subsequently work with αi and βi. δi can
directly be interpreted as the degree of conformity of player i, which we also call her type.
This is illustrated in Figure 1 with a player who’s true opinion is xi, while the perceived
group norm is qi.

10 A conforming type, i.e. δi ∈ (0, 1), would state an opinion between
the true opinion xi and perceived opinion xi. A counter-conforming type, i.e. δi ∈ (−1, 0),
would state an opinion that is more extreme than the true opinion xi (with respect to the
perceived opinion qi. Finally, an honest type, i.e. δi = 0, would straight-forwardly state
the true opinion, i.e. si = xi.

9Otherwise the second term dominates the first and, hence, the utility maximizing choice would be to
choose an infinitely far away opinion which would yield unreasonable behavior.

10δi ∈ (−1,+1) corresponds to the depicted interval because the limit cases are δi = −1, which
corresponds to si = xi − (qi − xi), and δi = 1, which corresponds to si = qi.
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Figure 1: Type space: Conforming, counter-conforming, and honest types.

Note that the feasible set of stated opinions depends on the difference between qi and
xi. With our modeling assumptions, especially due to the quadratic disutilities, the stated
opinion is proportional to the difference of qi and xi and the proportion is determined by
the personality trait δi.

Thus, we study a heterogeneous society of players who differ with respect to their
degree of conformity and their position in the social network. Let ∆ denote the n × n
diagonal matrix with entries δi on the diagonal. In each period the players interact by
stating some opinions. This constitutes a non-cooperative game, which is represented by
the tuple (N ,Rn, u(·|x(t))). Proposition 1 shows that there always exists a unique Nash
equilibrium in this game and we show how it depends on the opinion profile in period t.

Proposition 1. Let in period t ∈ N a non-cooperative game be given by (N ,Rn, u(·|x(t)))
such that u satisfies (2). Then there exists a unique Nash-equilibrium, given by s∗(t) =
[I −∆(I −D)−1(T −D)]−1(I −∆)x(t).

2.3 Model Summary

Without modeling each discussion round explicitly, we simply assume that in each period
the unique Nash equilibrium is played. Since opinions of period t+ 1 are formed by (1)
and the Nash equilibrium of each period can be calculated as in Proposition 1, we conclude
that the opinion profile in period t + 1 depends on the opinion profile in period t in the
following way:

x(t+ 1) = Mx(t), (3)

where M :=
[
D+(T−D)[I−∆(I−D)−1(T−D)]−1(I−∆)

]
. Note that the transformation

from x(t) to x(t+1), i.e. the matrix M , is independent of x(t). Thus, the opinion dynamics
under conformity is fully described by the power series M t, since x(t + 1) = Mx(t) =
M2x(t − 1) = ... = M t+1x(0).11 The relation to the classical DeGroot model becomes
apparent in this expression when recalling x(t+ 1) = Tx(t) = T t+1x(0). In that light the
misrepresentation of opinions leads to a transformation of the matrix T into the matrix
M .12 If every player is honest, i.e. δi = 0 for any i ∈ N , then M = T and, hence, we
are back in the classical case of DeGroot. This special case will serve as a benchmark
throughout the paper.

Let us illustrate the model introduced above by an example with three players.

11The simple linear structure of the best-replies is of course implied by our assumption of quadratic
utility. This assumption enables us to focus on the power series M t and the structure of M itself.

12Buechel et al. (2011) study a similar, but different, transformation of the DeGroot model.
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Example 1. Suppose there are three players. Player 1 (black) starts with an opinion
x1(0) = 0, Player 2 (red) and Player 3 (blue) have initial opinions of x2(0) = 50 and
x3(0) = 100. Player 2 is an honest (truth-telling) player, i.e. δ2 = 0, Player 3 is a
conforming player, i.e. δ3 = .5 > 0, and Player 1 is a counter-conforming player, i.e.
δ1 = −.5 < 0. To illustrate the implications of the different degrees of conformity we
let the players be in a symmetric network position. In particular, we let the interaction

structure be given by T =

.6 .2 .2
.2 .6 .2
.2 .2 .6

 .

The dynamics of opinions are displayed in Figure 2. The solid lines indicate the
dynamics of true opinions x(t), the dashed lines display the expressed opinions s(t), and
the dotted lines the perceived opinions qi (subjective average opinion of others).
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Figure 2: A three player example with one honest, one conforming, and one counter-
conforming player.

Since Player 2 (red) is honest, her stated opinion will always be equal to her true
opinion. Therefore those functions (red dashed line and red solid line) coincide. Player 3
is a conforming player, she always expresses an opinion (dashed blue line) that is a convex
combination of the perceived opinion of others (blue dotted line) and her true opinion
(blue solid line). Player 1 is a counter-conforming player. With respect to the perceived
average (black dotted line), she always expresses an opinion (black dashed line) that is
more extreme than her true opinion (black solid line). This influences both Player 2
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and 3’s perceived opinion and thus draws their true opinion more toward Player 1’s true
opinion. Such a behavior may, thus, also be interpreted as a convincing effort but as it is
defined in our model, Player 2 simply enjoys (derives utility from) stating a more extreme
opinion. Player 3, however, is a conforming player; her stated opinion draws the other
players less into the direction of her true opinion.

The opinion dynamics are such that stated, true, and perceived opinions of each player
become more and more similar. In the long–run, the dynamics of opinions converge to
some consensus such that every player shares the same true opinion. Moreover, the per-
ceived opinion q(t), the stated opinion s(t) and the true opinion x(t) converge to the same
point. To highlight the implications of the different degrees of conformity, let us compare
this example with the DeGroot model, i.e. the case where every player is honest (δi = 0,
i = 1, 2, 3). In the case of DeGroot, due to the perfect symmetry of T , the long–run
opinion would be 50. In this example, the long–run opinion is 33.3 which is caused by
both the conformity of Player 3 (since she draws the others less towards her) and by the
counter–conformity of Player 1 (since she draws the others more towards her). Thus, not
only in the short–run a counter–conforming player is convincing, but her impact in the
long–run is also larger than a conforming player.

The dynamics of Example 1 highlights several features, the generality of which we
discuss in the subsequent sections. While the opinion dynamics under conformity do not
always converge, we provide sufficient conditions for convergence. Moreover, we elaborate
on the properties of steady states and the properties of the consensus opinion. In particular
we focus on the social influence of the players, i.e. the impact of each players initial opinion
on consensus, as a function of network position and degree of conformity. We extend the
setup to introduce the notion of wisdom, i.e. we examine the consensus with respect to
information aggregation.

3 Two-Player Case

Let us begin with the analysis of the two player case. In this case closed form solutions
are easy to obtain and, still, it is possible to observe several important properties of the
opinion dynamics. (The n-player case is presented in Section 4.)

Let n = 2. Then we can write T as

T =

(
1− t12 t12

t21 1− t21

)
with t12, t21 ∈ (0, 1). With only two players the relevant group average for one agent is
simply the stated opinion of the other agent, i.e. q1 = s2 and q2 = s1. Plugging in the
variables for T into (3), yields

M =

1− t12
1− δ2

1− δ1δ2

t12
1− δ2

1− δ1δ2

t21
1− δ1

1− δ1δ2

1− t21
1− δ1

1− δ1δ2

 .

Recall that x(t) = M tx(0), i.e. the dynamics of opinions is determined by the power
series of M which depends on its eigenvalues. 1 is always an eigenvalue of M because the
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Figure 3: Seven cases of two players dynamics. Solid lines represent true opinions and
dashed lines display stated opinions. (0) Shape of λ. (a) δ > 0, conformity. (b) δ = 0,
honesty. (c) δ̂ < δ < 0, smooth convergence under counter–conformity. (d) δ = δ̂,
one-step convergence. (e) δ < δ̂ < 0, alternating dynamics with convergence under
counter-conformity. (f) δ < δ̃, alternating dynamics (λ = −1). (g) δ < δ̃, divergence.

rows of M sum up to one. Since the trace of a matrix equals its sum of eigenvalues, we can
determine the second eigenvalue as λ = 1 − t12

1−δ2
1−δ1δ2 − t21

1−δ1
1−δ1δ2 which is a real number.

Since 1−δi
1−δiδj > 0 for δi, δj ∈ (−1,+1), we have λ < 1, implying that M is diagonalizable.

Thus, we can write

M t = V

(
1 0

0 λt

)
V −1, (4)

where V is the matrix of right-hand eigenvectors. In particular, M t converges if |λ| < 1
and, moreover, the smaller |λ|, the higher the speed of convergence.

To study the the effect of conformity/non-conformity on convergence and the speed
of convergence, consider first the special case δ1 = δ2 =: δ. Then λ simplifies to

λ = 1− 1

1 + δ
(t12 + t21). (5)

Suppose in addition that t12 + t21 < 1, i.e. the diagonals of T have a higher value in
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sum than the off-diagonals. Then Figure 3 illustrates how the conformity parameter δ
determines the second eigenvalue λ and thereby the type of dynamics.13 Part (0) depicts

the shape of λ as a function of δ. λ is increasing in δ, and, moreover, λ
δ↓−1→ −∞ and

λ
δ↑+1→ 1− 1

2
(t12+t21). We have λ ≥ 0 if and only if δ ≥ (t12+t21)−1 =: δ̂(∈ (−1, 1)). Where

λ is negative, the absolute value |λ| is depicted by the red curve. This absolute value is first
decreasing then increasing in δ. We distinguish 7 cases of different dynamics, labeled from
(a) to (g). These cases are exhaustive in the sense that all possible convergence scenarios in
the two player case with δ1 = δ2 and t12 +t21 < 1 are listed. Only case (a) shows dynamics
under conformity; (b) to (f) are dynamics under counter-conformity. In cases (a) to (c), i.e.
for λ > 0⇔ δ > δ̂, we observe smooth convergence. Moreover, for these cases, convergence
is slowed down by conformity. To see the reason, consider Player 2 in cases (a) and (b). If
Player 1 conforms (case a), then Player 2 is less swayed to the center compared with the
case (b) where Player 1 is honest.14 Counter-conformity increases speed of convergence
until the point where λ = 0 ⇔ δ = δ̂ (case (d)). In that special case a steady state is
reached immediately after one period of play, i.e. x(1) = M1x(0) = M∞x(0), what we
call one-step convergence. For λ < 0 ⇔ δ < δ̂, i.e. cases (e) to (g), opinion dynamics
alternate in the sense that the two players switch their relative positions. It depends
on the degree of counter-conformity whether the alternating dynamics converge (like in
case (e)), follow a two-cycle (case (f)), or diverge (like in case (g)). The condition for
convergence is |λ| < 1, which becomes δ > 1

2
(t12 + t21)− 1 =: δ̃(< 0).15

In the two player case with δ1 = δ2 the following observations hold generally: For δ ≤ δ̃
we have alternating dynamics that do not converge; for δ ∈ (δ̃, δ̂), we have alternating
dynamics that converge; for δ ≥ δ̂, we have smooth dynamics that converge. Moreover,
speed of convergence is increasing in conformity under alternating dynamics (δ < δ̂) and
decreasing in conformity under smooth dynamics (δ > δ̂), while one-step convergence
happens for δ = δ̂.

Now, let us relax the assumption δ1 = δ2. It is still possible to have one-step conver-
gence. The relevant condition, λ = 0, is equivalent to t12

1−δ2
1−δ1δ2 + t21

1−δ1
1−δ1δ2 = 1.

Since λ < 1 (see reason above), the necessary and sufficient condition for convergence
of M t becomes λ > −1, which is equivalent to

t12
1− δ2

1− δ1δ2

+ t21
1− δ1

1− δ1δ2

< 2. (6)

To interpret this condition in terms of individual conformity parameters, let us distin-
guish two cases:

(i) If δ2 ≤ 2t21+t12−2
2+t12

, then M t converges if and only if δ1 >
t12(1−δ2)+t21−2

t21−2δ2
.

(ii) If δ2 >
2t21+t12−2

2+t12
, then M t converges for any δ1 ∈ (−1,+1).

13If the assumption t12 + t21 < 1 is violated, the picture and discussion only slightly change. Therefore,
we omit the discussion of that case.

14Since players are resistant against their own misrepresentation, conformity of Player 1 does not
increase her move to the opinion of Player 2.

15Another aspect that can be observed in this figure is that under convergence, i.e. in cases (a)-(e), it
seems that the same opinion is approached in each case. We will show later on that this observation is
not a coincidence and that it is induced by the setting δ1 = δ2.
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As it can be checked, the threshold which defines the two cases is in the interval (−1, 1
3
) and

given we are in case (i), the threshold for δ1 is below 1. Thus, if Player 2 has a relatively
low degree of conformity (case (i)), then Player 1 must be sufficiently conforming in order
to assure convergence. If we are in case (ii), where conformity of Player 2 is not too low,
convergence is reached for any conformity of Player 1. In fact, δ2 >

1
3

is sufficient to be
in case (ii). Since similar arguments can be made by exchanging the players’ labels, in
the two-player case we always have convergence if there is a player with δi >

1
3
. Thus, a

sufficiently conforming player will reach consensus with any other player.

4 Opinion Dynamics

To study the dynamics of opinions of n players, we first elaborate on the properties of
steady states and the relation of true, perceived, and stated opinion. We then turn to
providing conditions for convergence of opinions and finally determine where opinions
converge to.

4.1 Steady States

The dynamics of stated opinions s(t) can be derived from the dynamics of x(t) = M tx(0)
since Proposition 1 determines s(t) in dependence of x(t). Also, the dynamics of q(t)
are determined by s(t) since each perceived opinion qi(t) is exogenously defined as some
weighted average of s(t).

If it is the case that dynamics eventually settle down, we have x(t+ 1) = x(t), which
is only true if Mx(t) = x(t). In general, we define z ∈ Rn to be a steady state of the
opinion dynamics if Mz = z, i.e. if it is a (right-hand) eigenvector of M corresponding to
the eigenvalue 1. Considering the characteristic equation det(I −M) = 0, we can rewrite
its argument with use of (3) as follows:

I −M =
[
I − (T −D)∆(I −D)−1

]−1
(I − T ), (7)

as shown in the Appendix 6.2. Proposition 2 uses this expression to clarify the relation
between steady states of the interaction structure T and the law of motion of the opinion
dynamics M and the implications for the perceived, stated, and true opinions.

Proposition 2 (Steady States). 1. The following are equivalent:

(a) x is a steady state, i.e. Mx = x,

(b) Tx = x,

(c) perceived and true opinion coincide, i.e. q = x,

(d) perceived and stated opinion coincide, i.e. q = s.

2. If s = x, then δi(Tx− x)i = 0 for all agents i ∈ N . If δi 6= 0 for all agents i ∈ N ,
then s = x implies that x is a steady state.

The equivalence between Mx = x and Tx = x should not be misinterpreted. It does
not mean that both dynamics M tx(0) and T tx(0) converge to the same vector of opinions.
What this condition really means can best be seen when T is irreducible, i.e. every player
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interacts (at least indirectly) with everybody else. Then, since T is row stochastic, Tx = x
is equivalent to xi = xj for all i, j ∈ N . In this case, all those opinion profiles are steady
states of T , where every player has the same opinion. We call this a consensus. Only
consensus opinions can then be “steady states of T” (i.e. Tx = x) and hence of M . Thus,
the opinion dynamics in our model (according to M) only lead to steady states that are
also steady states of the special case with δi = 0 for all i (i.e. the classic DeGroot model),
but they do in general not lead to the same vector of opinions when starting with some
vector x(0). Further, the equivalence between Mx = x and Tx = x implies that the rows
of M always sum up to 1. This is true since T is row stochastic and hence T1 = 1 (where
1 is the vector of ones) and thus by the above result M1 = 1. Note however that, in
contrast to T , M may have negative entries.

Proposition 2 part 1 also shows that in a steady state true opinion, stated opinion
and perceived opinion of any agent agree (since x = q = s). This is only true in a steady
state. However, the fact that true opinion x and stated opinion s coincide is not sufficient
for a steady state. The reason is simply that an honest agent (δi = 0) always reports her
opinion truthfully no matter of being in a steady state or not. In Part 2, however, we
show that if agents are dishonest (δi 6= 0 for all i ∈ N ), then all opinions are reported
truthfully (x = s) only in a steady state.

In the following we study the power series M t and its limit because it determines the
sequence of true opinions. Since x(t) = M tx(0) it is straightforward to see that the opinion
dynamics x(t) converges to a steady state (for any given initial opinion profile x(0)) if and
only if M t converges. From Proposition 2 it follows that in this case also q(t) and s(t)
converge. Note that we may also have convergence of opinions x(t) if M t diverges. This
can be most easily seen if every player starts with the same opinion (i.e. xi(0) = xj(0)
for all i, j ∈ N ). Then from Proposition 2 we get one period convergence of x(t). This
may also happen in the classical DeGroot model, i.e. such that δi = 0.16 However, in any
case – whether or not M t converges – it is possible to show that in our model the true
opinions x(t) converge if and only if the stated opinions s(t) converge, which is equivalent
to convergence of perceived opinions q(t) (see Appendix 6.3, Lemma 3). Moreover, all
converge to the same limit. Thus, throughout the paper, we will restrict our analysis to
the dynamics of true opinions x(t).

4.2 The Structure of M

While some of the intuition gained in the two-player case will generalize, there are features
of larger networks, that cannot appear between only two players. First, in the 2-player
case, both players necessarily interact with one another since we assume that tii < 1
for all i = 1, ..., n. When considering the opinion dynamics with n-players, there can be
players who are not influenced at all by one another, or where the influence is only one-
way. Intuitively, even with our assumptions of conformity respectively non-conformity,
the opinion of a given player should not matter for another player in the short or long run
if there is no path in the network T connecting both players, i.e. no (indirect) interaction
takes place. We thus consider a partition of the player set N such that the players are
ordered into groups which are determined by the interaction patterns, i.e. the paths in
the network implied by T .

16See Berger (1981) for a necessary and sufficient condition for convergence of opinions in the DeGroot
model.
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Definition 1. Let Π(N , T ) = {C1, C2, ..., CK ,R} be a partition of N into K(≥ 1) groups
and the (possibly empty) rest of the world R such that:

• Each group Ck is strongly connected, i.e. ∀i, j ∈ Ck there exists l ∈ N such that
(T l)ij > 0.

• Each group Ck is closed, i.e. ∀i ∈ Ck, Tij > 0 implies j ∈ Ck.

• The (possibly empty) rest of the world consists of the players who do not belong to

any group, i.e. R = N \
K⋃
k=1

Ck.

With a suitable renumeration, each matrix T can be organized into blocks which
correspond to the groups of the partition Π(N , T ):

T =


T11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 TKK 0
TR1 · · · · · · TRK TRR

 (8)

with Tkk = T |Ck , TRR = T |R, and TRk consisting of the rows of T belonging to R and
the columns of T belonging to Ck. This kind of organizing the players into groups and
organizing the matrix into blocks is standard in the literature based on the DeGroot model
(DeMarzo et al., 2003; Golub and Jackson, 2010).

Proposition 3 explicitly shows that M—and in fact M t—has the same block structure
as T . Moreover, it characterizes M t.

Proposition 3 (Blocks). Let T be given as in (8), i.e. organized into blocks according to
the partition Π(N , T ) = {C1, C2, ..., CK ,R}. Then for every t = 1, 2, ... we have

M t =


M t

11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M t
KK 0

(M t)R1 · · · · · · (M t)RK M t
RR


with

M t
kk = [I −

(
I − (Tkk −Dkk)∆kk(I −Dkk)

−1
)−1

(I − Tkk)]t

for all k = 1, . . . , K,R, and

(M t)Rk =
t−1∑
l=0

M l
RRMRkM

t−1−l
kk ,

where MRk = (I − (TRR − DRR)∆RR(I − DRR)−1)−1TRk[(I − ∆kk(I − Dkk)
−1(Tkk −

Dkk))
−1(I −∆kk)] for all k = 1, . . . , K.
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The proof of Proposition 3 is given in Appendix 6.4. Concerning the block structure of
M t and considering that x(t) = M tx(0), Proposition 3 shows that the opinion dynamics
of each group Ck can be studied independently. Only for players in R multiple groups
may matter. The players in R, on the other hand, do not affect the dynamics within
groups.

More importantly, Proposition 3 provides an explicit expression for M t and thus for
the sequence of true opinions (since x(t) = M tx(0)). Let us now investigate the limit of
this sequence.

4.3 Convergence

From Proposition 3 it becomes apparent that each closed and strongly connected group
can be studied independently. Therefore, it is necessary for convergence of M t that for
all groups Ck of T the relevant blocks M t

kk converge for t → ∞. To see that this is not
sufficient, consider the following example:

Example 2. Suppose there are four players such that T =


.7 .3 0 0
.3 .7 0 0
.03 .03 .7 .24
.03 .03 .24 .7

 . Thus

players 1 and 2 form a closed and strongly connected group C1, while players 3 and 4 are the
rest of the world R. Let the conformity parameter δ be given by δ = (0, 0, δROTW , δROTW )
Figure 4 shows the opinion dynamics for the cases δROTW = −.7 and δROTW = −.92.
While convergence within the closed and strongly connected group is guaranteed, the ROTW
may cause divergence of M t for t→∞.
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Figure 4: The opinion dynamics of Example 2 for (a) δROTW = −.7 and (b) δROTW = −.92.

Thus, convergence of all closed and connected groups M t
kk is not sufficient for conver-

gence of M t. In Proposition 4, we identify the additional condition on the ROTW such
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that M t converges.

Proposition 4 (Convergence result 1). Let the block structure of M be given as in Propo-
sition 3. M t converges for t → ∞ if and only if M t

kk converges for all k = 1, . . . , K and
M t
RR converges to 0.

The proof of Proposition 4 is given in Appendix 6.5. Proposition 4 presents a necessary
and sufficient condition for convergence of M in terms of the block structure. In Example 2
the condition that MRR converges to 0 fails since strong counter-conformity of two players
leads to eigenvalues with high absolute value to the extent that |λRR| > 1, for some
eigenvalue of MRR. A similar violation of the necessary condition for convergence occurs
if counter–conformity of players in the closed and strongly connected groups is too high.
Thus, one can derive the intuition that too high counter-conformity may cause non-
convergence. The following result presents simple conditions on the degree of conformity
and the interaction structure that ensure convergence of the opinion dynamics.

Proposition 5 (Convergence result 2). M t converges for t → ∞ if ∀i ∈ N we have
tii > 0 and δi ≥ 0.

The condition presented here is fairly weak. If we exclude counter-conformity (δi ≥ 0),
and every individual has at least some self-confidence, then the opinion dynamics converge.
Although all cases of conformity are covered by Proposition 5, it is important to emphasize
that this condition is not necessary for convergence. Examples of convergence also with
counter-conformity are given in Examples 1, 2 and in Section 3.

4.4 Long-run

For the remainder, we now assume that the power series M t converges. Although confor-
mity is sufficient for convergence, we do not explicitly assume this. There may be some
counter–conforming players in the society.

We are now left to address where opinions converge to (in the long-run) when starting
with some opinion profile x(0). The answer to this question depends on the learning
matrix T and the conformity parameter δ. We are particularly interested in the influence
of each player’s initial opinion on the long–run opinion given her network position and
her degree of conformity. By Proposition 3, we can again focus on the elements of the
partition Ck ∈ Π(N , T ) separately such that we can characterize limt→∞M

t in terms of
each M t

kk and the rest of the world R ∈ Π(N , T ).

Theorem 1. Let T and M be organized as in Proposition 3. We denote by w, v ∈ Rn

the vectors that fulfill the following: for each closed and strongly connected group Ck ∈
Π(N , T ), w|Ck is the left unit eigenvector of Tkk with

∑
i∈Ck

wi = 1, while v|Ck is left unit

eigenvector of Mkk with
∑
i∈Ck

wi = 1. If M t converges for t → ∞ to some matrix M∞,

then the following holds:

M∞ =


M∞

11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M∞
KK 0

M∞
R1 · · · · · · M∞

RK 0
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with

M∞
kk = 1Ckv

′
|Ck = 1Ckw

′
|Ck

I −∆kk

1
′
Ck(I −∆kk)w|Ck

, (9)

and
M∞
Rk = (I − TRR)−1TRkM

∞
kk (10)

for all k = 1, . . . , K.

Theorem 1, the proof of which can be found in Appendix 6.6, fully characterizes the
long-run dynamics of (true) opinions given convergence since x(∞) = M∞x(0). For
the interpretation of the result, we distinguish again between the closed and strongly
connected groups Ck and the rest of the world R.

We can first observe that the long–run opinions may differ across groups, but each
closed and strongly connected group Ck reaches a consensus ck as each block M t

kk of M t

converges to a matrix of rank 1. Each row of M∞
kk is given by the left-hand unit eigenvector

v′|Ck , implying

ck := xi(∞) = xj(∞) = v′|Ckx(0)|Ck (11)

for all agents i, j in group Ck. The left-hand normalized unit eigenvector v′|Ck thus displays
the extent to which the initial opinion of each player i within group Ck matters for con-
sensus. Moreover, v′|Ck is dependent on w′|Ck , the left-hand unit eigenvector of Tkk, and the
conformity parameters within the group, ∆kk. We delay the interpretation of this result
to the next subsection.

The long-run opinion of a player in the ROTW is simply some weighted average of the
long-run opinions c1, . . . , ck within the groups 1, ..., K. To see this, consider the matrix

Γ := (I − TRR)−1(TR11|C1 , . . . , TRK1|CK )

which is easily seen to be row-stochastic and enables translating (10) into

x(∞)|R = Γc (12)

with the K-dimensional vector c = (c1, . . ., cK)′ combining the long–run opinions of the
closed and strongly connected groups. Thus, the initial opinion of some player in the
ROTW does not affect the long–run opinion profile x(∞) since the ROTW players end
up with a weighted average of the consensus opinions of the closed and strongly con-
nected groups, which in turn are dependent on the initial opinions within those groups.
Moreover, the weights of averaging depend on T but not on the conformity parameters
δ. Consequently, the long-run opinion of an agent in the ROTW neither depends on an
initial opinion nor on the conformity parameter of any agent within the ROTW (includ-
ing herself). Since each player in the ROTW may average differently between consent
opinions of the closed and strongly connected groups, the players in the ROTW need not
reach a consensus if there is more than just one closed and strongly connected group.
Summing up, the important contribution of Theorem 1 lies in the characterization of v
as a function of w and ∆, as we will discuss next.

4.5 Interpretation (Opinion Leadership)

To simplify the discussion let us now restrict attention to one closed and strongly con-
nected group by assuming that there is only one such group, i.e. Π(N , T ) = N . For
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this purpose it is sufficient to assume that T is strongly connected or, equivalently, that
rk(I − T ) = n− 1.

Theorem 1 implies that convergence leads to consensus within a group. Assuming
rk(I − T ) = n − 1 we get from (11) that x(∞) = 1v′x(0) and hence xj(∞) = v′x(0) =∑

i∈N vixi(0). Thus, an entry vi of v determines the weight of the original opinion of agent
i on the long-run consensus opinion of her group. This is a very intuitive formalization of
opinion leadership: v measures the social influence of each player on the group.

Note that for δi = 0 for all i ∈ N , (9) yields v = w, i.e. opinion leadership is fully
determined by the unit eigenvector of T . w is a well-studied object in network science. It
is known as eigenvector centrality or Katz Prestige (Bonacich, 1972; Friedkin, 1991). This
index of centrality or power in a social network is recurrently defined via the columns of
T (formally via the rows of T ′): An agent is powerful if she is important for agents who
are powerful themselves.

When relaxing the assumption that every player is honest, then the following Corol-
lary of Theorem 1 shows how opinion leadership is not only determined by eigenvector
centrality, but also by the degree of conformity.

Corollary 1. Let rk(I − T ) = n − 1. Let w, respectively v, be the normalized left-hand
unit eigenvectors of T , respectively M . Then we have for any i ∈ N

vi =
(1− δi)wi∑
j∈N (1− δj)wj

. (13)

Moreover,

∂vi
∂δk

=
wk

n∑
j=1

wj(1− δj)

 wi(1− δi)
n∑
j=1

wj(1− δj)
− 1i=k

 =
wk

n∑
j=1

wj(1− δj)
(vi − 1i=k) . (14)

Opinion leadership (social influence) vi of some agent i is determined by the com-
bination of her network centrality in T (wi) and the individual conformity δi weighted
by the sum of these values of all players as becomes apparent from (13). Thus, there is
complementary relationship between network centrality and 1− δi (call it: the degree of
non-conformity): Social influence becomes minimal vi → 0 if either i′s network centrality
approaches zero or i is fully conform (δi → 1). In the same sense, social influence is
maximal if all other players’ influence is minimal.

Taking the network T as given, we can observe the comparative statics with respect
to δi. From (14) we get for all i ∈ N that opinion leadership is decreasing in “own”
conformity δi and increasing in other players’ conformity δk, k 6= i, since wj ∈ [0, 1] and
1−δj ≥ 0 for all j ∈ N . Thus, low own conformity fosters opinion leadership. The same is
true if other players are more conforming. We may use (14) also to examine which player’s
influences decreases most in response to a marginal increase in her own conformity. From
(14), we calculate that∣∣∣∣∂vi∂δi

∣∣∣∣ < ∣∣∣∣∂vj∂δj

∣∣∣∣ ⇔ w2
j (1− δj)− w2

i (1− δi) < (wj − wi)

(
n∑
k=1

wk(1− δk)

)
. (15)
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Thus, if two players have the same network centrality, wi = wj then by (15),
∣∣∣∂vi∂δi

∣∣∣ <∣∣∣∂vj∂δj

∣∣∣ if and only if δi < δj. In other words, the player with the already higher degree of

conformity and thus lower influence looses even more influence in response to a marginal

increase in conformity than a player with low conformity. Holding δi = δj, we get
∣∣∣∂vi∂δi

∣∣∣ <∣∣∣∂vj∂δj

∣∣∣ if and only if wi < wj, which implies that for two players with equal conformity

the player with the higher network centrality looses more influence when increasing own
conformity.

We can also use Corollary 1 to compare opinion leadership in our model v, with
opinion leadership in the classic DeGroot model w, (i.e. in the special case of our model
where every player i is an honest type, δi = 0). For this purpose consider first a society
where all agents are characterized by the same trait, i.e. δj = δ̄ for all j ∈ N . Then
(13) yields v = w: opinion leadership is not affected by conformity if all agents are
characterized by the same level of conformity. More generally, we have vi ≥ wi if and
only if δi ≤

∑
j 6=i

wj∑
k 6=i wk

δj, i.e. an agent’s social influence in our model compared to the

classic DeGroot model is fostered if δi is below some average of the others’ conformity
parameters.

Finally, Theorem 1 supports again the interpretation that counter-conformity can be
considered a persuasion device. Not only the next period’s opinion of others is drawn
into direction of own opinion as noted in Example 1, but also their long-run opinion is
influenced towards the own initial opinion. It must be pointed out, however, that “too
much” counter-conformity of multiple players can lead to divergence of opinions.

5 Wisdom

The discussion so far applies to any continuous opinion including those for which no true
value can be determined. In some applications, however, agents’ opinions are more or less
accurate with respect to some objective truth. A statistical phenomenon in this context
is the fact that aggregating independent individual opinions yields an arbitrarily accurate
estimate when the group size becomes large. This effect is sometimes called the “wisdom
of crowds.” One approach to study this phenomenon in the framework of the DeGroot
model is provided in Golub and Jackson (2010). They call a sequence of growing societies
’wise’ if, asymptotically, information aggregation is done in a way such that all agents’
long–run opinions converge to the objective truth. While Golub and Jackson (2010) focus
solely on the asymptotic properties for large societies, we are less interested in the wisdom
of a growing society, but address how the accuracy of information aggregation within a
given society depends on the conformity of its members.

In the following, we will therefore assume that there is some true value µ ∈ R and that
all agents of the society receive independent unbiased signals about µ which constitute the
agents’ initial opinions. Formally, this means that, for all i ∈ N , agent i’s initial opinion
xi(0) is a random variable with expected value µ and some individual variance σ2

i , and that
all xi(0) are uncorrelated random variables. Assuming that opinion dynamics converge, a
very natural question to ask is how close the different steady state opinions will be to the
true, but to the agents unknown, value µ. To measure this closeness between µ and an
estimate µ̂, we use the mean squared error (MSE), which is defined as E((µ̂− µ)2). The
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MSE can be decomposed into the squared bias, (E(µ̂−µ))2, and the estimator’s variance,
Var(µ̂):

E((µ̂− µ)2) = (E(µ̂− µ))2 + Var(µ̂).

As x(∞) = M∞x(0) and M∞
1 = 1, it is obvious that E(x(∞)) = µ1, i.e. all agents’

long–run opinions are unbiased estimates for µ. Denoting by Σ the covariance matrix
of x(0), the corresponding MSEs are therefore given by the entries on the diagonal of
M∞Σ(M∞)′. To study the effects of conformity on wisdom, we begin with an illustrative
example.

5.1 Wisdom: an Example

Let n = 10, (σ2
1, . . . , σ

2
10)=(6, 4, 8, 7, 6, 3, 10, 12, 14, 16), and

T =



0.9 0.1 0 0 0 0 0 0 0 0
0.4 0.6 0 0 0 0 0 0 0 0
0 0 0.8 0.2 0 0 0 0 0 0
0 0 0.3 0.7 0 0 0 0 0 0
0 0 0 0 0.7 0.3 0 0 0 0
0 0 0 0 0.3 0.7 0 0 0 0

0.1 0 0 0 0 0 0.9 0 0 0
0 0 0.2 0.3 0 0 0 0.5 0 0

0.1 0 0 0.1 0 0 0 0 0.8 0
0 0 0 0 0 0.2 0 0 0.2 0.6


.

In this situation, we have K = 3 closed and strongly connected groups, C1 = {1, 2},
C2 = {3, 4}, and C3 = {5, 6}, while players 7 to 10 form the rest of the world. If all agents
report their opinions truthfully (∆ = 0), we find the MSEs equal to (4, 4, 4, 4, 2.25,
2.25, 4, 4, 2, 1.0625). There are several striking features of this result. First of all, due
to the fact that their long–run opinions are equal, all agents within a closed and strongly
connected group share the same level of wisdom. Comparing the first two groups, we
find the surprising result that the MSEs of these two groups are 4 each, although the first
group enjoys significantly better initial signals of variances 6 and 4, while the second group
seems to combine their less precise signals of variances 8 and 7 much more effectively than
the first group. It is also remarkable that player 2, by communicating with player 1, ends
up with exactly the same MSE of 4 that she would reach if she used only her own signal.
With respect to the rest of the world, notice that these agents typically have different
MSEs. Furthermore, players 7 and 8 each end up with the same MSE as the first two
groups while players 9 and 10 achieve MSEs better than all members of the closed and
strongly connected groups.

Now suppose that players 2, 3, and 5 are conforming with δ2 = 5/9, δ3 = 2/3, and
δ5 = 1/2 (and δi = 0 for all other players). Then wisdom levels can be calculated to be
(4.9, 4.9, 4, 4, 2, 2, 4.9, 4, 2.225, 1.05625). Thus, increasing conformism may lead to less
wisdom (as the first group’s MSE becomes larger), the same wisdom (as the second group’s
MSE does not change), or more wisdom (as the third group’s MSE becomes smaller). We
also find that the players in the rest of the world are affected by the changes in conformity
of the players in the closed and strongly connected groups: the MSE of players 7 and 9
becomes larger, while player 10’s MSE improves slightly. It still holds that player 7 and
8’s MSEs equal that of the first and second group, respectively.
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We will now proceed by systematically analyzing the principles underlying the distri-
bution of wisdom within the society.

5.2 Wisdom of Groups

Due to (11), a group Ck will, given convergence, eventually end up reaching a consensus
where all players’ opinions are equal to µ̂k := v′|Ckx(0)|Ck . Hence, we can directly derive
group Ck’s wisdom as given by the MSE of µ̂k.

Lemma 1. The MSE of µ̂k is given by

MSEk := E((µ̂k − µ)2) =
∑
i∈Ck

v2
i σ

2
i =

∑
i∈Ck

 (1− δi)wi∑
j∈Ck

(1− δj)wj


2

σ2
i

As v2
i ≤ vi due to vi ∈ (0, 1] for all agents i, we easily find that

MSEk =
∑
i∈Ck

v2
i σ

2
i ≤

∑
i∈Ck

viσ
2
i ≤ min

i∈Ck
σ2
i . (16)

Thus, group Ck’s long-run opinion is on average at least as close to the true value µ as that
of the agent with the least precise signal. This worst case is given when both inequalities
in (16) become equalities, which is the case for vi ∈ {0, 1} for all i ∈ Ck (first inequality)
and vi = 0 for all i with σ2

i < max
j∈Ck

σ2
j (second inequality). Therefore, information updating

within group Ck is worst when importance is given to only one player whose signal is most
imprecise. This case would be approached if all other players were close to full conformity,
i.e. δi close to 1.

We now consider the comparative static effect of one agent’s conformity on the wisdom
of her group.

Proposition 6. The wisdom of a closed and strongly connected group Ck is increasing in
the conformity level of a group member i if and only if i′s product of signal variance and
power is larger than the group’s MSE, i.e.

∂MSEk

∂δi
≤ 0 ⇔ viσ

2
i ≥ MSEk .

To give an interpretation for Proposition 6, let us rewrite viσ
2
i = vi

1/σ2
i

and MSEk =∑
j∈Ck

vj
vj
1

σ2
j

. This shows that it is not a person’s expertise alone which is decisive for the

question of how this person can increase the group’s wisdom, rather, it is the ratio of
power over signal precision, vi

1/σ2
i
: if agents with a high ratio as compared to the group’s

average are more conforming, then this will reduce their power within the group, decrease
the group’s MSE, and thereby increase its wisdom. Vice versa, agents who are not powerful
enough in relation to their signal precision will increase the group’s wisdom if they are
less conforming, because this will increase their network importance, decrease the group’s
MSE, and foster its wisdom.

The above discussion implies that in optimum, the ratio of network importance over
signal precision must be constant within the group: viσ

2
i = vjσ

2
j for all i, j ∈ Ck. This is

formalized in the following corollary:
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Corollary 2. For the wisdom of the group Ck as measured by MSEk, we have:

MSEk ≥
1∑

j∈Ck

1
σ2
j

=: MSE∗k, (17)

with equality in (17) if and only if viσ
2
i = vjσ

2
j for all i, j ∈ Ck. The latter condition is

equivalent to

δi = 1− C 1

σ2
iwi

∑
j∈Ck

1
σ2
j

for all i ∈ Ck (18)

for some constant C ∈ (0, 2
∑
j∈Ck

1
σ2
j

min
j∈Ck

wjσ
2
j ).

Corollary 2 delivers the analogue to (16). While (16) describes the worst case with
respect to wisdom, Corollary 2 considers the best scenario: all agents within the same
closed and strongly connected group share the same ratio of network importance over
signal precision, and this case can always be achieved if the players’ conformity is dis-
tributed suitably. Notice that, in particular, choosing C ∈ (0,

∑
j∈Ck

1
σ2
j

max
j∈Ck

wjσ
2
j ) in (18)

ensures δi > 0 for all i ∈ Ck and therefore guarantees convergence of the opinions in Ck to
the best possible consensus µ̂k. Notice also that the optimal MSE is smaller than agent
i’s signal’s variance, σ2

i , for all agents i in group Ck, as is easily seen from (17). Therefore,
in the optimum, all agents benefit from the communication within Ck.

Reconsidering the example discussed in subsection 5.1, we find w1 = 0.8, w2 = 0.2,
w3 = 0.6, w4 = 0.4, w5 = 0.5, and w6 = 0.4. Therefore, in (18), the constant C can be
chosen in (0, 2/3) (group 1) and (0, 3/2) (groups 2 and 3). Choosing C = 1/3 (group
1) and C = 3/4 (groups 2 and 3) delivers δ1 = 5/6, δ3 = 5/12, and δ5 = 1/2 (and
δi = 0 for all other players). Thus, choosing the players’ degree of conformity according
to these values ensures the optimal wisdom within the respective groups given by (2.4,
2.4, 3.73, 3.73, 2, 2, 2.4, 3.73, 1.53, 0.883). The same level could also be reached for other
conformity levels, for instance, choosing C = 1/4 (first group), C = 3/7 (second group),
and C = 3/8 (third group) in (18), we find that the conformism levels δ1:6 = (7/8, 1/4,
2/3, 3/7, 3/4, 1/2) also lead to the optimal wisdom. Notice that, as in Golub and Jackson
(2010), wisdom thus is independent of the speed of convergence, as we have two examples
with the same optimal wisdom but different speeds of convergence (the last-mentioned
conformity levels lead to slightly slower convergence than the earlier mentioned ones).

5.3 Wisdom within the Rest of the World

Let us recall that agents in the rest of the world do not necessarily share a consensus
opinion in the long–run, so that we will typically have individual wisdom levels. Due to
(12), we have the following formula for the long–run opinions within the rest of the world:
x(∞)|R = Γµ̂, with µ̂ := (µ̂1, . . . , µ̂K)′. Therefore, it is obvious that the wisdom levels
in the rest of the world depend on the conformity levels of the agents in the closed and
strongly connected groups as these affect the consensus opinions µ̂k of these groups. On
the other hand, as neither the initial signals nor the conformity levels of the agents in
the rest of the world play any role for their long–run opinions, these agents’ wisdom is
independent of their conformity levels as well as of their initial signals. In other words,
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if the rest of the world is non-empty, information processing in the society is necessarily
inefficient as the information contained in these agents’ initial signals is inevitably lost.
Assuming convergence, let γi,k denote the long-term weight of the group Ck on the opinion

of agent i ∈ R, i.e. xi(∞) =
K∑
k=1

γi,kµ̂k (cf. (12)). This immediately translates into the

wisdom of an agent i ∈ R as follows:

E((xi(∞)− µ)2) =
K∑
k=1

γ2
i,k MSEk ≤ max

k=1,...,K
MSEk . (19)

The wisdom of an agent in the rest of the world depends on the wisdom within the closed
and strongly connected groups. More precisely, an agent i’s wisdom only depends on the
wisdom of groups Ck to which there is a directed path in the network T because this
corresponds to γi,k > 0. The worst case for an agent in the rest of the world is to be
influenced only by agents of one closed and strongly connected group with maximal MSE.
With regard to the example discussed in subsection 5.1 this is the case for Players 7 and 8
who have directed paths only into group 1, respectively group 2 such that they share their
MSEs of 4. Player 9, however, who has directed paths into both groups with MSE of 4
reaches an MSE of 2 since the long-term weights γ9,1 and γ9,2 are squared in (19). Finally,
Player 10 has a directed path into these groups via Player 9 and, moreover, has a directed
path into group 3. Player 10 is able to combine MSEs of 4, 4, and 2.25 into an MSE as
low as 1.0625. It is intuitive that for maximal wisdom of a player in the rest of the world,
all groups’ signals have to be accessed with some kind of balanced group weights. The
following proposition confirms this intuition.

Proposition 7. For agents i ∈ R, we have:

E((xi(∞)− µ)2) ≥ 1
K∑
k=1

1
MSEk

, (20)

with equality if and only if γi,k = 1

MSEk
K∑
l=1

1
MSEl

for all k = 1, . . . , K.

Therefore, the highest wisdom is achieved if an agent in the rest of the world averages
the different groups’ opinions in such a way that the product of weight put on a group
and its MSE is constant for all groups: the better a group’s estimate, the more weight
it should get. Nevertheless, as all the optimal weights are positive, this optimum can
only be achieved if from agent i there is a directed path into all the closed and strongly
connected groups.Notice also that the optimal weights depend on the groups’ MSEs, so
an agent in the rest of the world who is initially characterized by optimal weights would
no longer average the groups’ opinions optimally if conformity levels within the groups
were to change. It is remarkable that an agent in the rest of the world who is connected
to multiple groups can reach a significantly lower MSE than the best informed agents
(‘experts’) from those groups. Thus, the fact that agents in the rest of the world are
absolutely powerless does not imply that they are not wise.
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6 Concluding Remarks

In this paper we present a model of opinion formation that is based on the model by DeG-
root (1974) but incorporates the fact that individuals may state an opinion that is different
from their true opinion. Thereby the individuals interact strategically in every discussion
round. The incentive to depart from the true opinion is given by each individual’s prefer-
ence for conformity. A highly conforming player will state an opinion that is close to her
peer-group’s opinion, while non-conforming players exaggerate their true opinion to coun-
tervail the opinion of others (Proposition 1). Hence, in addition to informational social
influence modeled by näıve updating through the network T as in the DeGroot model,
we also model normative social influence by including conforming/counter–conforming
behavior. In particular, players are heterogeneous with respect to their network position
and their degree of conformity. If the degree of conformity of all players is zero, then the
DeGroot model is obtained as a special case of our model.

We elaborate on the long–run implications and convergence to a steady state of re-
peated play of Nash equilibrium. This implies that the law of motion of opinion profiles
is given by a time–homogeneous matrix M which is a transformation of the interaction
structure T , but preserves the group structure (Proposition 3). Steady states are then
characterized by opinion profiles such that in each closed and strongly connected group
all players have the same opinion, i.e. reach a consensus (Proposition 2). A sufficient
condition for convergence to a steady state is given if all players have at least some
self–confidence (positive diagonal of T ) and the conformity parameter of all players is
non–negative (Proposition 5).

As the main result of this paper, we show to which steady state the opinion dynam-
ics under conformity converges (Theorem 1). The players in each closed and strongly
connected group reach a consensus in the long–run which is characterized by a weighted
average of the initial opinions such that the averaging weights depend on network cen-
trality and degree of conformity. We interpret this result in terms of opinion leadership
and wisdom within groups.

Opinion leaders are those whose initial opinion has high influence on consensus. We
show that influence of a given player is increasing in network centrality, increasing in other
players’ conformity and decreasing in own degree of conformity (Corollary 1). Taking the
network as given, we conclude that low conformity fosters opinion leadership while high
conformity undermines opinion leadership. Therefore, counter–conformity can also be
interpreted as a persuasion device since not only the connected players’ opinions of next
period are influenced towards own opinion but a higher impact on the consensus opinion
is achieved.

We also elaborate on a phenomenon that is often called “wisdom of the crowds” which
occurs when aggregation of individual opinions yields an accurate estimate if the group
size is large. In our context, we particularly ask how information aggregation within a
given group is affected by the individual degrees of conformity, keeping the group size
fixed. We assume that each player’s initial opinion is a noisy but unbiased signal about
some true state of the world such that the players are heterogeneous with respect to signal
precision (the inverse of the variance). Wisdom of a given group is then defined as the
mean squared error of the consensus opinion. We show the comparative static effects
of varying individuals’ conformity parameter on wisdom (Proposition 6) and find that
increasing conformity of players with high ratio of network centrality over signal precision
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as compared to the group’s average decreases the group’s MSE, and thereby increases
its wisdom. In particular, optimal wisdom within a given closed and strongly connected
group is achieved if distribution of conformity degrees is such that this ratio is balanced
(Corollary 2). Since the conformity of players in the rest of the world does not affect
consensus, we analyze how the network structure affects the wisdom within this group.
We find that although players in the rest of the world are powerless in terms of influence,
they can be quite wise if they are connected to many wise closed and strongly connected
groups.

The model presented here contains some simplifying assumptions which may be relaxed
in future research. First, we assumed that the social network is exogenous and stays fixed
over time. In the literature we can find models where the network structure may vary over
time such that only players with “close opinions” are trusted (Hegselmann and Krause,
2002), self confidence varies (DeMarzo et al., 2003), and general changes are possible
(Lorenz, 2005). It would be interesting to see how changes in the interaction structure,
either exogenously or endogenously, affect our results. Second, we assumed that the
network which determines how the true opinions are influenced and the network which
determines how the stated opinions are formed (i.e. the network which determines the
players to which a given player conforms) coincide. If such an assumption is relaxed,
the group structure may no longer be preserved. Moreover, interesting applications to
lobbying (addressing a certain group) are imaginable. We leave these ideas and possible
extensions to future research.
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6 Appendix: Proofs

6.1 Nash Equilibrium

Proof of Proposition 1

Proof. Given some opinion profile x ∈ Rn, let s∗i denote the best reply of player i to the
strategy profile s ∈ Rn. Note that the best reply is unique and satisfies the first order
condition:

∂ui(si, s−i|xi)
∂si

∣∣∣
si=s∗i

= −2αi (s
∗
i − xi)− 2βi

(
s∗i −

∑
j 6=i

tij
(1− tii)

sj

)
= 0,

for all i ∈ N . A strategy profile is a Nash equilibrium if and only if s∗i is a best reply
to s∗ ∈ Rn. Thus using the notation introduced above and letting δi = βi

αi+βi
we get that

Nash equilibria s∗ ∈ Rn satisfy:

(I −∆)(s∗ − x) + ∆
(
I − (I −D)−1(T −D)

)
s∗ = 0

Note that I −D is invertible since D is by assumption diagonal with entries 0 ≤ tii < 1.
Further, since (I −D)−1(T −D) is row stochastic, and since ∆ has all entries |δii| < 1 we
also have that (I −∆(I −D)−1(T −D)) invertible.17 Thus, we get a unique solution to
the first order condition given by,

s∗ =
(
I −∆(I −D)−1(T −D)

)−1
(I −∆)x.

6.2 Rewriting I-M

Lemma 2 (I-M). I −M = (I − (T −D)∆(I −D)−1)
−1

(I − T ).

Proof of Lemma 2 (I-M).
First, we can rewrite M , given by (3), to obtain

M = T − (T −D)(I −∆(I −D)−1(T −D))−1∆(I − (I −D)−1(T −D)),

This can be verified by the following calculation.

M = D + (T −D)(I −∆(I −D)−1(T −D))−1(I −∆)

= D + (T −D)
[
I −∆(I −D)−1(T −D)

]−1[
I −∆(I −D)−1(T −D)

+ ∆(I −D)−1(T −D)−∆
]

= D + (T −D)(I +
[
I −∆(I −D)−1(T −D)

]−1[
∆(I −D)−1(T −D)−∆)

]
= T − (T −D)

[
I −∆(I −D)−1(T −D)

]−1
∆
[
I − (I −D)−1(T −D)

]
.

17Since Y := (I − D)−1(T − D) is row stochastic we have |λi(Y )| ≤ 1 for all eigenvalues λi of Y.
Multiplication with a diagonal matrix ∆ with entries |δii| < 1 implies that |λi(∆Y )| < 1 for all eigenvalues
λi of ∆Y , see Ostrowski (1959), Theorem 1. Thus, I − ∆Y is non-singular since there exists no 0-
eigenvalue.
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Thus,

I −M = I − T + (T −D)
[
I −∆(I −D)−1(T −D)

]−1
∆(I −D)−1(I − T )

=
(
I + (T −D)

[
I −∆(I −D)−1(T −D)

]−1
)

∆(I −D)−1(I − T ) (21)

Now, note that for any n×m-matrix A and any m×n-matrix B we have that In−AB is
invertible if and only if Im−BA is invertible, and then (In−AB)−1 = In+A(Im−BA)−1B,
since (In+A(Im−BA)−1B)(In−AB) = In−AB+A(Im−BA)−1B−A(Im−BA)−1BAB =
In −AB +A(Im −BA)−1(Im −BA)B = In. Here, Ik denotes the k-dimensional identity
matrix, k ∈ {n,m}. Taking A = T − D and B = ∆(I − D)−1 in (21) then gives
I −M = (I − (T −D)∆(I −D)−1)

−1
(I − T ).

6.3 Steady states

Proof of Proposition 2

1. x is a steady state of T , i.e. Tx = x ⇔ (I − T )x = 0 if and only if
[
I − (T −

D)∆(I − D)−1
]−1

(I − T )x = 0, since by Lemma 2
[
I − (T − D)∆(I − D)−1

]
is

invertible. Thus by Lemma 2, Tx = x if and only if Mx = x.

It therefore suffices to show that Mx = x ⇒ q = x ⇒ q = s ⇒ Mx = x.

(a) x = Mx = Dx+ (I −D)q implies (I −D)x = (I −D)q, thus q = x.

(b) q = x implies s = (I −∆)x+ ∆q = (I −∆)q + ∆q = q.

(c) q = s implies s = (I −∆)x + ∆q = (I −∆)x + ∆s and therefore (I −∆)s =
(I − ∆)x and s = q = x, from which we find Mx = Dx + (I − D)q =
Dx+ (I −D)x = x.

2. Suppose x = s. Note that s = (I −∆(I −D)−1(T −D))
−1

(I − ∆)x by Proposi-
tion 1. Thus

x = s

⇔ (I −∆(I −D)−1(T −D))x = (I −∆)x

⇔ ∆ (I − (I −D)−1(T −D))x = 0

⇔ ∆(I −D)−1 (I −D − (T −D))x = 0
(∗)⇔ (I −D)−1∆ (I −D − (T −D))x = 0

⇔ ∆ (I − T )x = 0.

where (*) holds, since (I −D)−1 and ∆ are diagonal.

Lemma 3. The following are equivalent:

1. True opinions x(t) converge for t→∞.

2. Stated opinions s(t) converge for t→∞.
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3. Perceived opinions q(t) converge for t→∞.

Moreover, if the true, stated and perceived opinions converge then the lim
t→∞

x(t) = lim
t→∞

s(t) =

lim
t→∞

q(t).

Proof of Lemma 3
From Proposition 1 we get that s(t) = (I −∆(I −D)−1(T −D))

−1
(I −∆)x(t). Thus

convergence of x(t) implies convergence of s(t). By definition we have that q(t) = (I −
D)−1(T −D)s(t), and hence convergence of s(t) implies convergence of q(t). To see that
convergence of q(t) implies convergence of x(t) consider (I − D)q(t) = (T − D)s(t) and
x(t + 1) = Dx(t) + (T − D)s(t) = Dx(t) + (I − D)q(t), by definition. For all t ≥ 0,

this implies x(t) = Dtx(0) +
t−1∑
l=0

Dt−1−l(I −D)q(l), the first part of which converges to 0

because all elements of the diagonal matrix D belong to [0, 1). The limit of x(t) therefore
equals

lim
t→∞

t−1∑
l=0

Dt−1−l(I−D)q(l) = lim
t→∞

t−1∑
l=0

Dt−1−l(I−D) (q(l)− q(∞))+ lim
t→∞

t−1∑
l=0

Dt−1−l(I−D)q(∞).

First of all, notice that the second limit obviously is q(∞), because
∞∑
l=0

Dl = (I − D)−1.

For the first limit, note that for any ε > 0, we can find an index lε such that we have
||q(l)− q(∞)|| < ε for all l > lε. Splitting the sum into small l (l ≤ lε) and large l (l > lε),
we then easily see that the first term converges to 0, so that all in all, x(t) converges to
q(∞). Since s(t) = (I −∆)x(t) + ∆q(t), also s(t) shares the same limit.

6.4 Block structure

Proof of Proposition 3.
Let Z := [I−∆(I−D)−1(T−D)]−1(I−∆) to simplify s∗ = Zx and M = D+(T−D)Z.

We now proceed in three steps: we first characterize Z, then M , and finally M t. Let T
be given as in (8). Then simple but tedious block matrix algebra together with Lemma 2
yields:

1.

Z =


Z11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 ZKK 0
ZR1 · · · · · · ZRK ZRR


with

Zkk = (I −∆kk(I −Dkk)
−1(Tkk −Dkk))

−1(I −∆kk),

ZRk = ZRR(I −∆RR)−1∆RR(I −DRR)−1TRkZkk

for all k = 1, . . . , K, and

ZRR = (I −∆RR(I −DRR)−1(TRR −DRR))−1(I −∆RR).
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2. For M = D + (T −D)Z = I − (I − (T −D)∆(I −D)−1)
−1

(I − T ), we get

M =


M11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 MKK 0
MR1 · · · · · · MRK MRR


with

Mkk = Dkk + (Tkk −Dkk)(I −∆kk(I −Dkk)
−1(Tkk −Dkk))

−1(I −∆kk)

= I −
(
I − (Tkk −Dkk)∆kk(I −Dkk)

−1
)−1

(I − Tkk),

MRk = TRkZkk + (TRR −DRR)ZRk

= (I − (TRR −DRR)∆RR(I −DRR)−1)−1TRkZkk

for all k = 1, . . . , K, and

MRR = DRR + (TRR −DRR)(I −∆RR(I −DRR)−1(TRR −DRR))−1(I −∆RR)

= I −
(
I − (TRR −DRR)∆RR(I −DRR)−1

)−1
(I − TRR).

3. Finally, we claim that for every t ∈ N∗,

M t =


M t

11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M t
KK 0

(M t)R1 · · · · · · (M t)RK M t
RR


with (M t)Rk =

t−1∑
l=0

M l
RRMRkM

t−1−l
kk for all k = 1, . . . , K.

The assertion for the diagonal elements M t
11, . . . ,M

t
KK and M t

RR is trivial. We prove
the formula for M t

Rk by induction:

• For t = 1, the assertion is trivial.

• t 7→ t+ 1: first, we have M t+1
Rk = (M tM)Rk = M t

RkMkk +M t
RRMRk by simple

matrix multiplication. Inserting (M t)Rk =
t−1∑
l=0

M l
RRMRkM

t−1−l
kk , we find

M t+1
Rk =

(
t−1∑
l=0

M l
RRMRkM

t−1−l
kk

)
Mkk +M t

RRMRk =
t+1−1∑
l=0

M l
RRMRkM

t+1−1−l
kk ,

(22)
which concludes the proof.
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6.5 Convergence

Proof of Proposition 4

1. ’Only if’: this is proven in the first part of the proof of Proposition 5.

2. ’If’: Now suppose each Mkk converges and MRR converges to 0. First, since Mkk

converges, its only eigenvalue with |λ| ≥ 1 is λ = 1 with algebraic and geometric
multiplicity equal to 1 for every k = 1, . . . , K. On the other hand, M t

RR → 0
implies that the eigenvalues of MRR are all smaller than 1 in absolute value and,
thus, MRR − λI is invertible for all complex numbers λ with |λ| ≥ 1.

Now let the complex number λ̃ be either outside of the unit circle (|λ̃| > 1) or exactly
on the unit circle (|λ̃| = 1), but different from 1. Denoting x = (x11, . . . , xKK , xRR)
and taking into account the block structure of M , we easily see that any solution of
(M − λ̃I)x = 0 must satisfy x11 = 0, . . . , xKK = 0 and therefore also xRR = 0, so
that we can conclude that λ = 1 is the only possible eigenvalue of M with |λ| ≥ 1.

In order to show convergence of M t, we therefore have to show that algebraic and
geometric multiplicity of λ = 1 coincide. With regard to algebraic multiplicity, the

block structure of M implies det(M − λI) =
K∏
k=1

det(Mkk − λI) det(MRR−λI), such

that the algebraic multiplicity of λ = 1 is the sum of the algebraic multiplicities
of M11, . . . ,MKK and MRR, which are given by 1 and 0, respectively, since Mkk is
by definition irreducible for all k = 1, ..., K. All in all, the algebraic multiplicity
equals K. With regard to geometric multiplicity, the block structure of M implies

that every vector of the form (c11, . . . , cK1, (I−MRR)−1
n∑
k=1

ckMRk1) with constants

c1, . . . , cK is an eigenvector to M for λ = 1, implying that the geometric multiplicity
is at least K, thereby concluding the proof.

Proof of Proposition 5

Denote Y := (I −D)−1(T −D) which is row stochastic. Thus, if |δi| < 1 for all i ∈ N
we have that [I−∆Y ] is invertible and [I−∆Y ]−1 =

∑∞
k=0(∆Y )k. Moreover, if δi ≥ 0 for

all i ∈ N the sum
∑∞

k=0(∆Y )k is a sum of non-negative matrices, implying that [I−∆Y ]−1

is non-negative. Hence M =
[
D + (T −D)[I −∆Y ]−1(I −∆)

]
is non-negative since it is

the product of non-negative matrices (since 0 < tii < 1) added to D, which is a diagonal
matrix with strictly positive entries (0 < tii). Finally, since M1 = 1 by Lemma 2 we get
that M is row stochastic. Since the diagonal of D is strictly positive, we get that the diago-
nal of M is strictly positive, mii > 0, implying aperiodicity of M . Thus M t converges.

6.6 Long–run

To prove Theorem 1, the following Lemma is helpful.

Lemma 4 (Convergence to Eigenvector). Let A be an n × n-matrix with A1 = 1 and
rk(I −A) = n− 1. If At converges to A∞ for t→∞, then A∞ = 1w′, with w′ the unique
normalized left eigenvector of A associated with the eigenvalue 1.
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Proof of Lemma 4
Obviously, AA∞ = A∞ = A∞A. This implies that

• the columns of A∞ must be multiples of 1,

• the rows of A∞ must be multiples of w′,

from which we find A∞ = c1w′ for some real number c which is found to be equal to 1
as 1 = A∞1 = c1w′1 = c1.

Proof of Theorem 1
We first derive the formula for M∞

kk . Then we turn to M∞
RR and M∞

Rk.
Let v′ denote the unique normalized left eigenvector of M associated with the eigenvalue 1,
i.e. v′M = v′ such that v′1 = 1. Moreover, assume for the moment that rk(I−T ) = n−1.
Then as v′(M − I) = 0, we have due to Lemma 2

0 = v′(I −M) = v′
(
I − (T −D)∆(I −D)−1

)−1
(I − T ),

implying

v′
(
I − (T −D)∆(I −D)−1

)−1
= r w′

for some real number r. Using w′T = w′, we then find

v′ = r w′
(
I − (T −D)∆(I −D)−1

)
= r w′

(
I − (I −D)∆(I −D)−1

)
= r w′(I −∆).

The normalization of v then entails r = 1
w′(I−∆)1

, which shows that v =
(I −∆)w
1
′(I −∆)w

.

Now, relaxing the assumption rk(I − T ) = n− 1, the formula for M∞
kk follows.

Furthermore, MM∞x = M∞x and therefore due to Proposition 2, TM∞x = M∞x
for all n-dimensional vectors x, delivering TM∞ = M∞. This implies

• M∞
RR = TRRM

∞
RR and therefore (I − TRR)M∞

RR = 0, entailing M∞
RR = 0 because

I − TRR is invertible,

• M∞
Rk = TRkM

∞
kk + TRRM

∞
Rk, and therefore M∞

Rk = (I − TRR)−1TRkM
∞
kk .

Proof of Corollary 1 The expression follows straightforwardly from Theorem 1. For
the comparative statics consider,

∂vi
∂δk

=

∂ wi(1−δi)
n∑
j=1

wj(1−δj)

∂δk

=
wk

n∑
j=1

wj(1− δj)

 wi(1− δi)
n∑
j=1

wj(1− δj)
− 1i=k


=

wk
n∑
j=1

wj(1− δj)
(vi − 1i=k) .
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6.7 Wisdom

Proof of Lemma 1
First of all, µ̂k is easily seen to be unbiased for µ because

∑
i∈Ck

vi = 1. Therefore, its

MSE equals its variance which is given by
∑
i∈Ck

v2
i σ

2
i as the xi(0) are uncorrelated.

Proof of Proposition 6

∂MSEk

∂δi
=

∂
∑
j∈Ck

v2
jσ

2
j

∂δi
=
∑
j∈Ck

2σ2
j vj

∂vj
∂δi

(14)
=

2wi∑
j∈Ck

wj(1− δj)
∑
j∈Ck

σ2
j vj (vj − 1j=i) .

The assertion follows easily when noting that MSEk =
∑
j∈Ck

vjvjσ
2
j .

Proof of Proposition 7 First, notice that E((xi(∞) − µ)2) =
K∑
k=1

γ2
i,k MSEk, with

K∑
k=1

γi,k = 1 for all i ∈ R. As the assertion is trivial for K = 1, we assume K > 1

and replace γi,K by 1−
K−1∑
k=1

γi,K . We can then understand

K∑
k=1

γ2
i,k MSEK =

K−1∑
k=1

γ2
i,k MSEk +

(
1−

K−1∑
k=1

γi,k

)2

MSEK

as a function f of (γi,1, . . . , γi,K−1), defined on the convex and compact set of all (γi,1,. . .,

γi,K−1) with γi,k ≥ 0 for all k = 1, . . . , K − 1 and
K−1∑
k=1

γi,k ≤ 1. We then easily find

∂f

∂γi,l
= 2γi,l MSEl−2 MSEK

(
1−

K−1∑
k=1

γi,K

)
(23)

and
∂2f

∂γi,l∂γi,m
= 2 (MSEl 1l=m + MSEK). From the last expression, we find the Hessian of

f to be constant and positive definite, implying that f is a strictly convex function defined
on a compact set. Therefore, f is known to take its unique minimum at the solution of
the FOC’s (23) if such a solution exists. As γi,k = 1

MSEk
K∑
l=1

1
MSEl

delivers a solution, the

proof is complete.
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