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Abstract

We introduce synthetic control methods (SCM) as a forecasting technique. Using i) as economic

predictors solely the outcome itself, i.e., lagged values of the dependent variable, and ii) lagged

time series of the outcome to build the donor pool, we let SCM choose and weight appropriate

values in order to come up with a sensible forecast of U.S. GDP growth. This procedure performs

competitively viable compared with alternative forecasting methods.
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1 Introduction

In their seminal papers, Abadie and Gardeazabal (2003) and Abadie et al. (2010) introduce

synthetic control methods (SCM). In all applications so far, SCM rests upon the comparison

of an outcome between a unit representing the case of interest, e.g., a unit affected by an inter-

vention (“treated”), and otherwise similar but unaffected units (“non-treated”) reproducing

an accurate counterfactual of the unit of interest in absence of the intervention.1 This is noth-

ing different than forecasting the development of a counterfactual scenario for a variable of

interest and then comparing this development to its actual counterpart in order to evaluate a

certain treatment.

Now, why shouldn’t we think about doing the exact analogon in cases where there is no

treatment to evaluate, but where we are interested in plainly forecasting a certain economic

measure? In such a case, we would not want to compare the forecast against any value, but

to simply create this forecast properly. This paper explores how we can make use of SCM to

compute such forecasts.

In the usual SCM approach, synthetic control unit and actual unit should resemble each

other with respect to pre-treatment values of a) the outcome variable and b) predictors of the

outcome. These predictors can consist of variables with predictive power for explaining the

dependent variable (“covariates”) as well as lagged values of the outcome.

As for general forecasting techniques, it is common to solely use lags of the outcome in

order to forecast corresponding future values. This is exactly what we do, simply by applying

SCM: we use a) deferred time series of the dependent variable as potential donor units and

b) lagged values of the outcome, and no covariates, as potential economic predictors, and

let the SCM algorithm endogenously choose optimally weighted lags to create a synthetic,

one-period forecast of U.S. GDP growth.

1 See, for instance, Cavallo et al. (2013) (natural disasters), Kleven et al. (2013) (taxation of athletes),
Acemoglu et al. (2016) (political connections), or Gobillon and Magnac (2016) (enterprise zones).
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2 Computing a Forecast with SCM

In the SCM approach,2 the synthetic control unit is created out of a “donor pool” of J control

units. The comparability to the treated unit is determined by a set of predictors from T pre-

intervention periods: M linear combinations of Y and r (other) covariates with explanatory

power for Y . All k predictors (with k = r + M) are combined in a (k × 1) vector X1 for the

treated unit and in a (k × J) matrix X0 for all control units.

In one part of the optimization process (the inner optimization), one tries to find a linear

combination of the columns ofX0 that representsX1 best. The distance metric used to measure

this difference is: ‖X1 − X0W‖V =
√

(X1 −X0W )′ V (X1 −X0W ), where the weights used

to construct the synthetic control unit are denoted by the vector W , and the weights of the

predictors are given by the non-negative diagonal matrix V . The inner optimization is then, for

given predictor weights V , the task of finding non-negative control unit weights W , summing

up to unity, such that: √
(X1 −X0W )′ V (X1 −X0W )

W→ min (1)

The solution to this problem is denoted by W ∗(V ), which typically contains many vanishing

components as these cannot become negative.

The second part of the optimization (the outer optimization) deals with finding optimal

predictor weights. It usually follows a data-driven approach, where V is chosen among all

positive definite and diagonal matrices such that the mean squared prediction error (MSPE)

of the outcome variable Y is minimized over the pre-intervention periods. To this end, Y
(j)
t

denotes the value of Y for unit j at time t = 1, . . . , T , where j = 1 denotes the treated unit,

and j = 2, . . . , J + 1 denote the control units.

Using a discount factor β ≤ 1 to put more weight on more recent observations, the outer

2See Abadie and Gardeazabal (2003) and Abadie et al. (2010).
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optimization problem looks as follows:

T∑
t=1

βT−t

(
Y

(1)
t −

J+1∑
j=2

W ∗(V )jY
(j)
t

)2

V→ min . (2)

As explained above, in traditional applications of SCM, the treated unit is synthesized

by units from a so-called donor pool. For instance, when considering U.S. GDP growth, the

variable of interest is ’GDP growth’, and for synthesizing the U.S., one would look for GDP

data from, e.g., Canada, the U.K., and other countries. In the context of forecasting, however,

the aim of this paper is to forecast U.S. GDP growth relying solely on U.S. data. The role of

donors is thus taken by lags of the original time series, i.e., time-shifted versions of the series

for different lags. More precisely, denoting the original time series’ value at time t by Yt, we

denote for lags 1, 2, . . . the correspondingly lagged time series by Y
(1)
t := Yt−1, Y

(2)
t := Yt−2, . . .,

respectively.

With regard to economic predictors, we do not use any covariates (r = 0) but consider the

following linear combinations of lagged values of Y : the time average, defined as 1
T

T∑
t=1

Y
(j)
t for

every j, and single values at different points in time—the first value in time, Y
(j)

1 , the ’middle’

value, Y
(j)
dT/2e, and the last, most recent value, Y

(j)
T .

In our subsequent empirical application, we evaluate the following five SCM specifications:

’average’, where M = 1 and only the time average is used, ’last’, where again M = 1 and only

the most recent value is used, ’average & last’, where M = 2 and both the time average and

the most recent value are used, ’first, middle, last’, where M = 3 and the first, middle, and

last point in time are used, and ’all’, where M = T and every single value in time, i.e., Y
(j)
t

for t = 1, . . . , T is used.
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3 Empirical Application

Figure 1 depicts the quarterly time series of U.S. real and seasonally adjusted GDP growth

from the second quarter of 1947 to the first quarter of 2015,3 for which we will create forecasts

applying SCM. We let discount factors take values in {0.8, 0.9, 0.95, 1}, while we use lags

1, . . . , H as potential donors, where H ∈ {8, 12, 16, 20, 24, 28, 32, 36, 40} is the maximal lag

included. Theoretically, every lag 1, . . . , H may be endogenously chosen to contribute to W ∗.

However, for reasons explained above, typically only a small number of lags will be attributed

positive weight: SCM-based estimators therefore feature a built-in shrinkage behavior.

For given H and β, the five different specifications introduced above will be denoted by

SCMβ
A(H) for ’average’, SCMβ

L(H) for ’last’, SCMβ
A,L(H) for ’average & last’, SCMβ

F,M,L(H)

for ’first, middle, last’, and SCMβ
All(H) for ’all’.
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Figure 1: U.S. GDP Growth (%) between 1947 and 2015.

Our corresponding SCM forecasts are compared against the subsequent, well-known fore-

casting methods: Holt-Winters (’H-W’), Random Walk (’R-W’), and ARMA(p,q) models,

where p, q ∈ {0, 1, 2, 3, 4} are chosen by Akaike’s and Bayes’ Information Criterion (’AIC’,

’BIC’), respectively.4 While we exclusively focus on one-period-ahead forecasts, we study dif-

3 Available here: http://research.stlouisfed.org/fred2; last accessed on August 18, 2016.
4All calculations were done using statistical software R (R Core Team (2016)) and package MSCMT (Becker
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ferent window lengths T , stepping from three years (12 quarters) to ten years (40 quarters).

For the smallest window length of three years, the times for which forecasts are computed

range from the second quarter of 1960 to the first quarter of 2015. With increasing window

length, the time points for the first forecast move to the right, finally resulting in forecast

times for the largest window length of ten years ranging from the second quarter of 1967 to

the first quarter of 2015.

Table 1 shows the winners of horse races according to three different criteria: the average

rank of an estimator according to the corresponding forecasts’ precision, the mean absolute

prediction error (MAPE), and the root mean square prediction error (RMSPE). About half

of the horse races are won by SCM based forecasts, where the criterion RMSPE favors SCM

a little more compared with the other two. Throughout the SCM winners, it becomes obvious

that higher β provide more precise estimates. Regarding specifications, ’all’ and ’average &

last’ seem to perform better than the rest, especially better than ’first, middle, last’. This

suggests that predictors based on old values seem less important than predictors based on more

recent ones. With respect to donors, we observe that particularly the maximal lag number of

36 supports SCM winners, while we still have corresponding winners with, e.g., maximal lags

of 8 and 12. Overall, when averaging over all window lengths, ’MAPE’ and ’RMSPE’ yield

SCM winners with a β of 1, an ’average & last’ and ’all’ specification, respectively, and 36

lags as potential donors.

Table 2 displays values of the criteria, averaged over all window lengths, for all estimators

that managed to win at least one horse race (as of Table 1), as well as for the remaining (non-

winning) competing estimators—Holt-Winters and Random Walk. Over all criteria, these

latter estimators perform much worse than any of the race winners. Among such winners,

the 36 lags based SCM estimator with β = 1 of specification ’average & last’, SCM1
A,L(36),

performs very well with respect to all three criteria and might therefore be considered the

overall winner. What is more, out of 36 potential lags, the SCM algorithm attaches weights

to only five of these values (on average) to build the synthetic forecast.

and Klößner (2016)).
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Table 1: Winners of Different Horse Races

Ranks MAPE RMSPE

Window Length 8 SCM1
All(8) SCM0.95

All (28) SCM1
All(40)

Window Length 12 SCM0.95
A,L (36) SCM0.95

A,L (36) SCM1
All(36)

Window Length 16 SCM1
A,L(8) SCM1

A,L(12) SCM1
A,L(12)

Window Length 20 SCM0.9
A,L(36) BIC SCM1

A,L(36)

Window Length 24 BIC SCM1
A,L(36) BIC

Window Length 28 BIC BIC BIC

Window Length 32 AIC AIC AIC

Window Length 36 AIC BIC BIC

Window Length 40 BIC BIC SCM1
A(28)

Overall BIC SCM1
A,L(36) SCM1

All(36)

Note: Criteria for winning a horse race are: ’Ranks’, calculated as the average rank of
the estimator among all estimators; ’MAPE’, the mean absolute prediction error; and
’RMSPE’, the root mean square prediction error.’Overall’ denotes the winner w.r.t.
the average over all window lengths.

Table 2: Average Values of Different Criteria for Horse Race Winners & Competing Non-Winners

Ranks MAPE RMSPE

SCM0.95
All (28) 92.43 2.823 3.754

SCM1
All(8) 90.27 2.873 3.812

SCM1
All(36) 90.17 2.746 3.646

SCM1
All(40) 90.62 2.758 3.656

SCM1
A(28) 92.45 2.875 3.808

SCM0.9
A,L(36) 88.03 2.787 3.751

SCM0.95
A,L (36) 87.77 2.766 3.721

SCM1
A,L(8) 90.46 2.824 3.855

SCM1
A,L(12) 91.27 2.840 3.786

SCM1
A,L(36) 87.03 2.731 3.693

AIC 87.48 2.825 3.806

BIC 86.19 2.756 3.710
H-W 101.25 3.082 4.086
RW 98.91 2.986 3.969

Note: Values of criteria, averaged over all window lengths, for i) above horizontal line: all estimators
winning at least one horse race; ii) below horizontal line: competing, never winning estimators.
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Recall that such behavior resembles features of so-called shrinkage estimators, which is why

we finally compute corresponding forecasting results with a Lasso-type estimator for fitting

autoregressive time series models as discussed in Nardi and Rinaldo (2011). This estimator

performs worse than our overall winner, SCM1
A,L(36), according to all three criteria: the version

without cross-validation yields values 87.77 (Ranks), 2.782 (MAPE), and 3.765 (RMSPE),

while corresponding values for the version with cross-validation are 89.69, 2.797, and 3.726,

respectively. Eventually, over all window lengths and across all criteria, none of the forecasts

based on Nardi and Rinaldo (2011) would emerge as a winner in Table 1.

4 Discussion

This paper initiates thinking about SCM as a forecasting technique. We consider outcome lags

as economic predictors and create a donor pool out of deferred time series of the dependent

variable. Eventually, we let the SCM procedure choose appropriately weighted lags to compute

a one-period, synthetic forecast of U.S. quarterly GDP growth. We find that SCM performs

competitively well compared with alternative forecasting techniques. Over several window

lengths and precision criteria, a certain SCM specification even emerges as the overall horse

race winner.

Certainly, one can think about creating the SCM donor pool differently. For instance, we

could include properly constructed down- or upward trends. Moreover, one could want to

not simply rely on transformations of the dependent variable, but also on covariates with

predictive power for the outcome. Eventually, we can also think about re-designing our SCM

model with, e.g., a donor pool consisting of other countries’ GDP forecasts. In this case, SCM

would perform something similar to an error-smoothing over such different predictions.
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