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Abstract

In multi-group and longitudinal studies, it is important to test for metric measure-

ment invariance. Recently, several authors have pointed out that currently used test

procedures for measurement invariance (MI) do not fully test for MI and that addi-

tional assumptions about the invariance of the referent indicator are needed in order to

conclude that actual data satisfy MI.

Introducing the new concept of proportional factor loadings (PFL), we show that

tests for MI actually only test for PFL, because PFL is empirically indistinguishable

from metric MI. More precisely, if the loadings are only proportional over groups or

time, the implied distribution of the observed variables is identical to one that results

from invariant factor loadings. Thus, it is impossible to differentiate between MI and

PFL based on empirical data only. Furthermore, PFL affects tests about the equality

of latent variables’ variances, leading to wrong conclusions when the data only satisfy

PFL, but not MI.

We also discuss how the empirical indistinguishability between PFL and MI affects

partial MI. We find that it is typically impossible to differentiate invariant from non-

invariant indicators. Empirically, one can only detect which indicators form subsets

whose loadings are proportional. These findings explain why procedures for detecting

invariant indicators perform poorly under certain conditions, a disturbing fact that

several recent studies have found in Monte Carlo studies.

Finally, we also discuss the referent indicator problem and how different scaling

methods potentially affect the results of the above mentioned tests.
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1 Introduction

In multi-group and longitudinal studies, it is important to test for metric measurement in-

variance. Correspondingly, this topic has spurred a huge number of publications since the

beginnings with the seminal papers of Byrne et al. (1989) and Meredith (1993).1 The impor-

tance of measurement invariance stems from the fact that conclusions about a latent variable’s

behaviour in different groups based on observed variables’ variances and covariances may be

severely wrong when measurement invariance is lacking. Therefore, there is largely consensus

in the literature that before drawing such conclusions, a thorough investigation of measure-

ment invariance is mandatory: only if the latent variable measures, at least to a large degree,

the same underlying construct in all groups, comparisons between groups are sensible.

Recently, several authors have pointed out that currently used test procedures for mea-

surement invariance (MI) do not fully test for MI and that additional assumptions about the

invariance of the referent indicator are needed in order to conclude that actual data satisfy

MI. Introducing the new concept of proportional factor loadings (PFL), we show that tests

for MI actually only test for PFL, because PFL is empirically indistinguishable from metric

MI. More precisely, if the loadings are only proportional over groups or time, the implied

distribution of the observed variables is identical to one that results from invariant factor

loadings. Thus, it is impossible to differentiate between MI and PFL based on empirical data

only.

Furthermore, PFL affects tests about the equality of latent variables’ variances, potentially

leading to wrong conclusions when the data only satisfy PFL, but not MI. Using Monte Carlo

studies, we show that this problem is so severe that tests may have no power at all to detect

diverging variances or may with a probability of 100% wrongly indicate that latent variances

were different, although the data actually come from a process with identical latent variances.

We also discuss how the empirical indistinguishability between PFL and MI affects partial

MI. We find that it is typically impossible to differentiate invariant from non-invariant indi-

cators. Instead, empirically one can only detect which indicators form subsets whose loadings

are proportional. As we show, those subsets can be detected either by estimating the under-

lying model using different scaling methods, or alternatively by calculating properly chosen

ratios of factor loadings and investigating these with respect to invariance across groups.

Our paper is structured as follows: in Section 2, we introduce the notion of proportional

factor loadings (PFL) and discuss how tests on metric measurement invariance fail to detect

PFL. Building on this finding, section 3 theoretically shows that it is impossible to tell apart

1See Putnick and Bornstein (2016) for a very recent overview over the literature and the state of the art
regarding measurement invariance.
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PFL and metric MI based on data only, and that testing for metric MI is actually tantamount

to testing for PFL. Section 4 is devoted to the consequences of the empirical indistinguishabil-

ity of PFL and MI, in particular it is concerned with the question of how to properly interpret

a potential non-rejection of metric MI. In section 5, we discuss how PFL may distort the test-

ing for equality of latent variances across groups, while section 6 is devoted to partial MI and

the distinction betwenn ’proportional’ and ’invariant sets’ of indicators. Eventually, section 7

concludes.

2 Metric Measurement Invariance & Proportional Fac-

tor Loadings

Throughout this paper, we will consider the following well-known model for testing metric

measurement invariance in the context of confirmatory factor analysis (CFA):2 some latent

variables ξ, also called common factors in CFA, are indirectly measured through observed

variables X, being linked by the following equations that hold in every group g:

Xg = τg + Λgξg + δg, (1)

where τg, Λg, and δg denote intercepts, factor loadings, and measurement errors in group

g, respectively. Denoting the latent and observed variables’ mean by the symbols α and µ,

equation (1) implies the following relation:

µg = τg + Λgαg, (2)

while the variances and covariances are linked via

Σg = ΛgΦgΛ
′
g + Θg, (3)

where αg and µg denote the latent and observed variables’ covariances, while Θg denotes

the error term’s covariance matrix in group g. Measurement invariance (MI) is concerned

with the question whether certatin of these quantities are invariant over groups: for instance,

one speaks of metric MI when Λg is identical for all groups g = 1, . . . , G: Λ1 = . . . = ΛG.

When, additionally, the intercepts are invariant, too (τ1 = . . . = τG), one speaks of scalar

invariance. In this paper, however, we will restrict ourselves to investigating the problems

associated with testing for metric MI, leaving for future research a thorough investigation of

2We adopt the notation of Yoon and Millsap (2007).
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the problems appearing when testing for scalar MI.

In the literature, one particular case of metric non-invariance has attracted special atten-

tion: the scenario where the non-invariant factor loadings in a specific group (typically, the

second group in a two-group setting) are uniformly lower (or higher) than in the other groups.

This case is often termed ’uniform pattern of non-invariance’ and it has been investigated by,

i.a., Meade and Lautenschlager (2004), Meade and Bauer (2007), Chen (2007), Yoon and

Millsap (2007), Chen (2008), French and Finch (2008), and Whittaker and Khojasteh (2013).

With respect to this scenario, the literature has found two main results: first, the power

of detecting non-invariance is considerably lower as compared to a scenario where the non-

invariant loadings are both larger and smaller than those in other groups. While this result

may not be surprising, the second finding is intriguing and rather counter-intuitive: under

uniform non-invariance of loadings, the power to detect non-invariant loadings may decrease

when the number of non-invariant indicators grows larger.

A particular special case of uniform non-invariance is the one discussed by Yoon and

Millsap (2007), where non-invariant factor loadings are given by proportional rescalings: for

instance, in one of their simulation settings, non-invariant values in the second group were all

constructed as 4/7 of the corresponding loadings in the first group. In line with the above cited

literature, Yoon and Millsap (2007) find that the power to detect non-invariance deteriorates

drastically when more than half of the factor loadings are non-invariant. Carrying this idea to

the extremes, we will now discuss the case where all factor loadings are proportional between

the groups, but not invariant. We term this case ’proportional factor loadings’ (PFL), formally

it is defined by postulating that the loadings are identical up to some constant factors:

(PFL): there exist constants c1, . . . , cG such that c1Λ1 = . . . = cGΛG. (4)

Obviously, metric MI implies PFL, while PFL may be fulfilled although metric MI is not.

Thus, ideally, we would like tests for metric MI to be able to reliably detect PFL as a violation

of metric MI. Speaking in statistical terms, we would like tests of metric MI to have large

power for telling apart metric MI from PFL. In order to investigate this issue, we built on

the high-frequency, large loading differences setup of Yoon and Millsap (2007) and conducted

a small Monte Carlo study: we simulated data for two groups of size 500 each, employing

a most simple one-factor model with six indicators, with loadings of (.7, .9, .5, .6, .8, .3) and

4/7 · (.7, .9, .5, .6, .8, .3) in the first and second group, respectively. Factor variances were

1 and 1.3, respectively, while error term variances were identical in both groups, given by

(.7, 1.2, .4, .5, .9, .2). Replication size was 1,000, with different seeds for initializing the random
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generator of R3 and the simulation conducted using package lavaan4. Using the well-known

likelihood ratio test which compares the χ2-values of the unrestricted model without equality

conditions to that of the restricted model postulating Λ1 = . . . = ΛG, we found that at the 5%

significance level,5 metric MI was rejected in only 57 out of the 1,000 cases.6 This empirical

detection rate of 5.7% is extremely low and very close to the test’s nominal significance

level of 5%, thus it seems that the test has no power at all to tell apart PFL from metric

MI.7 In the sequel, we will therefore investigate theoretically why it is impossible to detect

violation of metric measurement invariance when the data generating process is characterized

by proportional factor loadings.

3 Testing for Metric Measurement Invariance is Tanta-

mount to Testing for Proportional Factor Loadings

Before attacking the general case, we will first explain why there is no power do tell apart

PFL from metric MI in the example considered above. To this end, recall that the loadings

were given by Λ1 = (.7, .9, .5, .6, .8, .3)′ and

Λ2 = 4/7 · (.7, .9, .5, .6, .8, .3)′ = (0.4, 0.5143, 0.3429, 0.2857, 0.4571, 0.1714)′

in the first and second group with factor variances of Φ1 = 1 and Φ2 = 1.3, respectively. This

implies that the term Λ2Φ2Λ
′
2 appearing in Equation (3) is given by

Λ2Φ2Λ
′
2 =



0.2080 0.267 0.1783 0.1486 0.238 0.0891

0.2674 0.344 0.2292 0.1910 0.306 0.1146

0.1783 0.229 0.1528 0.1273 0.204 0.0764

0.1486 0.191 0.1273 0.1061 0.170 0.0637

0.2377 0.306 0.2038 0.1698 0.272 0.1019

0.0891 0.115 0.0764 0.0637 0.102 0.0382


.

3See R Core Team (2016).
4See Rosseel (2012).
5We conducted the corresponding test using in turn each of the six indicators as referent variable, and

additionally also using the effects coding method of Little et al. (2006). The choice of the particular scaling
method has no influence on the test results, see also below.

6The literature provides alternatives to the χ2-differences test for testing metric MI, see e.g., Cheung
and Rensvold (2002), French and Finch (2006), Chen (2007), Meade et al. (2008), Cheung and Lau (2012),
Rutkowski and Svetina (2014). However, these procedures perform equally poorly when trying to detect
violation of metric MI as given by PFL.

7This is confirmed by a corresponding Monte Carlo study, where the second group’s data generating process
was equal to that of the first group and where metric MI was (wrongly) rejected in 55 out of 1,000 cases.
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For Λ̃2 := 7/4Λ2 and Φ̃2 := (4/7)2Φ2, we obviously have Λ̃2Φ̃2Λ̃
′
2 = Λ2Φ2Λ

′
2. Therefore, due

to formula (3), Λ1,Λ2 and Φ1,Φ2 on the one hand and Λ1, Λ̃2 and Φ1, Φ̃2 on the other hand

lead to the same covariance matrix for the observed variables and thus to the same data

generating process (dgp) for the observed variables. Therefore, even if we observed infinitely

many data and were able to fully and correctly infer the observed variables’ distribution, we

could not infer whether the data were generated by the original setup or from the modified

one. Thus, building on observed data only, it is impossible to decide whether data stem from

the original quantities Λ1,Λ2 and Φ1,Φ2 or from the modified quantities given by Λ1, Λ̃2 and

Φ1, Φ̃2. In other words, the original setup is empirically indistinguishable from the alternative

one. However, while the original setup exhibits proportional but non-invariant factor loadings,

the modified setup features invariant factor loadings! Taken together, we have two different

setups which imply the same dgp for the observed data, one with metric MI and one with

PFL, but without metric MI. This is exactly the reason behind the impossibility of telling

apart PFL from metric MI, not only in the above example, but also more generally.

In order to see why PFL is in general empirically indistinguishable from metric MI, recall

the defining condition for PFL from equation (4): the loadings in the different groups only

differ by some multiplicative constants c1, . . . , cG: c1Λ1 = . . . = cGΛG. We may thus modify

the latent variables’ loadings and covariances and construct Λ̃1 := c1Λ1, . . . , Λ̃G := cGΛG

and Φ̃1 := (1/c1)
2Φ1, . . . , Φ̃G := (1/cG)2ΦG, to arrive at a reformulation of the model with

invariant loadings, but identical dgp, due to Λ̃gΦ̃gΛ̃
′
g = ΛgΦgΛ

′
g for all groups g = 1, . . . , G.

Thus, every model satisfying PFL can be restated as a model satisfying metric MI, without

changing the underlying data generating process. Put differently, for every PFL model there

exists an empirically indistinguishable alternative model which fulfils metric MI.

The consequences of the empirical indistinguishability of PFL and metric MI are severe:

every statistical test designed for testing metric MI at a significance level of, say, α = 5%,

will be limited to detect PFL with a probability of at most α. This is necessarily so because

the probability of (wrongly) rejecting metric MI is bounded by α under dgp’s of metric MI.

However, as every dgp under PFL is identical to one under metric MI, this implies that the

probability of (correctly) rejecting metric MI under PFL is bounded by the same constant α.

Put differently, all tests for metric MI suffer from no power to detect PFL. Or, rephrasing

again, testing for metric MI is actually tantamount to testing for PFL.

This finding is a more precise formulation of several statements in the literature: for

instance, Raykov et al. (2012) rightfully argue that the tests for metric MI are not ’complete’,

by which they mean that the tests do not check ’complete’ invariance, but only whether the

ratios of all other indicators’ loadings to that of the referent indicator are invariant.8 This

8Similar considerations can be found in Appendix B of Cheung and Rensvold (1999).
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condition, i.e. invariance of these ratios, is actually easily seen to be equivalent to PFL.

Overall, therefore, one may summarize as follows: procedures designed for testing metric

MI are actually testing PFL only, i.e. they will not detect non-invariant loadings according

to PFL, but only violations of PFL. Therefore, they do not have power to detect PFL, but

only power to detect violations of PFL, with power increasing the more the dgp departs from

proportional factor loadings. This is the reason driving the above discussed intriguing and

puzzling results found by Meade and Lautenschlager (2004), Meade and Bauer (2007), Chen

(2007), Yoon and Millsap (2007), Chen (2008), French and Finch (2008), and Whittaker and

Khojasteh (2013).

4 Testing for Metric Measurement Invariance

We will now discuss how testing for metric MI is compromised by the fact that one actually

only tests for PFL. First of all, let us mention that, implicitly, this fact has already been

hinted at by several authors, see e.g. Cheung and Rensvold (1999) and Raykov et al. (2012)

and the references given therein. In particular, Cheung and Rensvold (1999) state rightfully:

’All such procedures embody a tacit assumption of invariance, even though the purpose of

the procedures described above is to test for invariance.’9

In principle, there are two distinct cases: when a test for metric MI leads to rejection of the

null hypothesis, then the data speaks against both metric MI and PFL. In such a situation,

researchers have clear evidence that metric MI probably is violated by the data.

However, the situation is much more complicated when a test for metric MI fails to re-

ject the null hypothesis: in this case, the data could possibly stem from a model with

metric MI, but as well from a model with PFL only. How should researchers then de-

cide between metric MI and PFL? Reconsidering the example discussed above: on what

grounds should we decide whether the PFL specification with Λ1 = (.7, .9, .5, .6, .8, .3)′,

Λ2 = (0.4, 0.5143, 0.3429, 0.2857, 0.4571, 0.1714)′ and factor variances of Φ1 = 1 and Φ2 =

1.3 is to be preferred over the empirically indistinguishable metric MI specification with

Λ1 = (.7, .9, .5, .6, .8, .3)′, Λ2 = (.7, .9, .5, .6, .8, .3)′ and factor variances of Φ1 = 1 and

Φ2 = (4/7)2 · 1.3 = 0.4245?10 One might argue that the latter is to be preferred because

it is somewhat more plausible that the loadings are actually invariant and not only pro-

portional. However, one might also argue that the variance of the latent variable under

consideration should be identical in both groups, in particular if there is evidence for this

hypothesis, be it from theory or other empirical studies. In that case, one might want to

9With italics as in Cheung and Rensvold (1999).
10When considering alternative specification, the error terms’ variances always stay unchanged.
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consider a third empirically indistinguishable alternative, given by Λ1 = (.7, .9, .5, .6, .8, .3)′,

Λ2 = 4/7 ·
√

1.3 · (.7, .9, .5, .6, .8, .3)′ = (0.4561, 0.5864, 0.3258, 0.3909, 0.5212, 0.1955)′ and fac-

tor variances of Φ1 = Φ2 = 1. To emphasize again, this decision can not be taken on statistical

grounds alone. All three model variants lead to identical distributions of the observed vari-

ables, and only reasons from outside of statistics may lead us to a decision in favor of a model

with invariant loadings but non-invariant latent variances, or in favor of a model with non-

invariant proportional loadings but invariant latent variances, or in favor of a model where

neither loadings nor latent variances are invariant.11 While in one application, going for the

invariant loadings may be appropriate due to information from outside of statistics, it might

in another application be the right thing to opt for a model with proportional loadings and

non-invariant latent variances.

It is important to notice that such a choice may have severe consequences: wrongly de-

ciding in favor of metric MI might lead to the conclusion that latent variances differ across

groups, although the differences stem from loadings that are only proportional. On the other

hand, assuming that the latent variances are invariant may lead to wrong conclusions when

they are in fact non-invariant. We will discuss these issues more deeply in the next section.

Finally, we want to point out again that the above discussed problems occur independently

of what scaling method is used to identify the unconstrained model of configural and the

constrained model of metric invariance, respectively. As already stated above, the results of

testing for metric invariance do not depend on the scaling method, because χ2-values and

other fit indexes are not affected by the particular choice of the scaling method.12 Thus, as

long as one only wants to test for metric MI, there is no ’referent indicator problem’, as the

test’s result does not depend on which indicator is chosen.13

5 Testing the Latent Variables’ Variances

In the following, we explore how testing for equality of latent variances may be affected when

factor loadings are not invariant, but only proportional. To this end, we consider five different

dgp’s of which two are characterized by metric MI, while the other three have non-invariant

factor loadings according to PFL. The corresponding parameters are described in Table 1:14

11The alignment method of Asparouhov and Muthén (2014) may be interpreted as postulating that in such
a case, one should opt for the model satisfying metric MI.

12This independence of the scaling method has also been confirmed by Johnson et al. (2009) by a corre-
sponding Monte Carlo study.

13However, when trying to detect non-invariant indicators, the choice of the referent indicator may matter
indeed, see below.

14For all dgp’s given in Table 1, error term variances are invariant over groups, to save space, they are
presented in Table 1 only once.
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MI EV MI Prop Prop SEV Prop EV
λ11 0.7000 0.7000 0.7000 0.7000 0.7000
λ21 0.9000 0.9000 0.9000 0.9000 0.9000
λ31 0.5000 0.5000 0.5000 0.5000 0.5000
λ41 0.6000 0.6000 0.6000 0.6000 0.6000
λ51 0.8000 0.8000 0.8000 0.8000 0.8000
λ61 0.3000 0.3000 0.3000 0.3000 0.3000
Φ1 1.0000 1.0000 1.0000 1.0000 1.0000

λ12 0.7000 0.7000 0.4000 0.4000 0.4000
λ22 0.9000 0.9000 0.5143 0.5143 0.5143
λ32 0.5000 0.5000 0.2857 0.2857 0.2857
λ42 0.6000 0.6000 0.3429 0.3429 0.3429
λ52 0.8000 0.8000 0.4571 0.4571 0.4571
λ62 0.3000 0.3000 0.1714 0.1714 0.1714
Φ2 1.0000 1.3000 1.3000 3.0000 1.0000

Θ1 0.7000 0.7000 0.7000 0.7000 0.7000
Θ2 1.2000 1.2000 1.2000 1.2000 1.2000
Θ3 0.4000 0.4000 0.4000 0.4000 0.4000
Θ4 0.5000 0.5000 0.5000 0.5000 0.5000
Θ5 0.9000 0.9000 0.9000 0.9000 0.9000
Θ6 0.2000 0.2000 0.2000 0.2000 0.2000

Table 1: Parameters for different models. Error term variances invariant across groups.

the data generating process called ’Prop’ is exactly the one that has already been discussed

above, it serves as a basic dgp from which the other dgp’s are derived. For instance, the

dgp ’MI’ is very similar to ’Prop’, with the only difference being that for ’MI’, the factor

loadings in the second group are identical to those in the first group. ’MI EV’ builds on ’MI’,

the only difference to ’MI’ is that ’MI EV’ has equal latent variances in both groups. On

the other hand, ’Prop SEV’ and ’Prop EV’ differ from ’Prop’ only with respect to the latent

variance, which is even more invariant across groups for ’Prop SEV’ and perfectly invariant

for ’Prop EV’.

For all these dgp’s, we simulated 1,000 replications with a sample size of 500 in each

group. In line with the above, testing for metric MI via the likelihood ratio χ2-difference test

at a significance level of 5% lead to rejecting metric MI only in 57, 55, 54, 54, and 58 cases

for ’Prop’, ’MI’, ’MI EV’, ’Prop SEV’, and ’Prop EV’, respectively. In the vast majority of

cases, one would thus have concluded that the data fulfil metric MI, these conclusions being

correct only for the dgp’s ’MI’ and ’MI EV’, but unknowingly erroneous for the three cases

of PFL, where the data stem from ’Prop’, ’Prop SEV’, and ’Prop EV’. In all these cases

where metric MI is not rejected, researchers typically might want to test whether the latent
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variable’s variance is invariant over the two groups, as one is often interested in detecting

whether the underlying factor’s variation does differ between groups or not.

The results of the corresponding tests, using a significance level of 5%, are as follows. For

’MI’, equality of latent variances is (rightfully) rejected for 621 out of the 945 cases: thus,

for ’MI’, the test can detect with a power of approximately 65.7% that the latent variables’

variances differ across groups. For ’MI EV’, equality of latent variances is rejected in only

40 out of 946 cases, showing that such a wrong conclusion happens only with a probability

of roughly 4.23%. For ’Prop’, equality of latent variances was (rightfully) rejected in 943

out of 943 cases, resulting in perfect power to detect the non-invariant latent variances. For

’Prop SEV’, however, where the discrepancy between the latent variances in the two groups is

much more pronounced, equality of latent variances was rejected only in 44 out of 946 cases,

i.e. with a probability of only approximately 4.65%. Put differently, although latent variances

under ’Pro SEV’ are very distinct, this difference is detected with a probability smaller than

the significance level of the test of 5%. In other words, there is no power at all to detect the

diverging latent variances under ’Prop SEV’, the probability of wrongly accepting equal the

hypothesis of latent variances being larger than 95%.15 For ’Prop EV’, on the other hand,

where latent variances coincide in the two groups, the hypothesis of equal variances is wrongly

rejected in 942 out of 942 cases.16

Summing up, we can state that testing for equality of latent variances may be severely

distorted when the data do not stem from metric MI, but only from PFL. First of all, under

PFL, the non-invariance of the factor loadings will typically remain undiscovered. As a

consequence, the probability of wrongly accepting the hypothesis of no variation of latent

variances across groups may be very large, even if the variances differ drastically across groups.

Furthermore, it is also possible that the test will be fooled to wrongly reject the hypothesis of

equal variances with a high probability, although latent variances are actually invariant. In a

nutshell: testing for equality of latent variances is severely compromised when factor loadings

are proportional, but not invariant across groups.

15The reason underlying the failure to detect the diverging latent variances is that under ’Prop SEV’,
the dgp in the second group is empirically indistinguishable from an alternative one where the loadings are
7/4 · (0.4, 0.5143, 0.2857, 0.3429, 0.4571, 0.1714) = (0.7, 0.9, 0.5, 0.6, 0.8, 0.3), i.e. equal to the loadings in the
first group, and the factor variance is 3 · (4/7)2 ≈ 0.9796.

16The reason for the large probability of wrongly rejecting the hypothesis of equal factor variances is that
under ’Prop EV’, the dgp in the second group is empirically indistinguishable from an alternative one where
the loadings are 7/4 · (0.4, 0.5143, 0.2857, 0.3429, 0.4571, 0.1714) = (0.7, 0.9, 0.5, 0.6, 0.8, 0.3), i.e. equal to the
loadings in the first group, and the factor variance is 1 · (4/7)2 ≈ 0.3265.
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Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6
Loading in Group 1 0.30 0.10 0.20 0.40 0.60 0.20
Loading in Group 2 0.60 0.20 0.40 0.80 0.60 0.20
Loading in Group 3 0.60 0.10 0.20 0.40 0.30 0.10
Error Variance 0.20 0.30 0.10 0.15 0.25 0.05

Table 2: Basic Example on partial MI. Error term variances invariant across groups, latent
variances Φ1 = Φ2 = Φ3 equal to 4 in all groups.

6 Analyzing Partial Metric Measurement Invariance

In empirical applications, researchers often find that their data are such that the hypothesis

of metric measurement invariance is untenable. Although this might indicate that latent

factors measure different things in different groups, one often proceeds by analyzing partial

measurement invariance, by which models are meant where the loadings of only some, but not

necessarily all indicators are supposed to be invariant. In the literature, a lot of attention has

been paid to this topic, starting almost thirty years ago with Byrne et al. (1989), but also very

recently, see e.g. Raykov et al. (2013), Yoon and Kim (2014), Jung and Yoon (2016), and Jung

and Yoon (2017). In the meantime, the corresponding problem of ’Locating the Violation of

Invariance’ has been named as one of four unsolved problems in studies of factorial invariance

by Millsap (2005).

In order to study the problems associated with partial invariance, we will have a detailed

look at the following example, where in three groups, a single factor is measured by six

indicators, see Table 2: none of the indicators has completely invariant factor loadings, as

for every indicator the loading in one group differs from the loading in the other two groups.

The latent variable’s variance was set to 4 in all groups and error term variances were also

invariant across groups, with values as given in Table 2.

Notice that the distribution of the observed variables does not change when we rescale

the factor in the first group according to Table 3: in this case, the loadings in the first

group become twice as large as in the orginal setup, and the latent variance in the first

group changes from 4 to unity. In this empirically indistinguishable case, there is exactly one

indicator with invariant factor loadings, namely Indicator 1. Analogously, one may alter the

basic setup by changing the latent factor’s scaling in the second group according to Table 4:

in this case, the loadings in the second group are only half as large as in the original setup,

and the latent variance correspondingly changes to 16. This second modification is again

empirically indistinguishable from the original setup, and strangely enough, now indicators

2, 3, and 4 display invariant loadings across groups. Finally, Table 5 shows yet another

modification resulting in an empirically indistinguishable model: it is constructed by doubling
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Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6
Loading in Group 1 0.60 0.20 0.40 0.80 1.20 0.40
Loading in Group 2 0.60 0.20 0.40 0.80 0.60 0.20
Loading in Group 3 0.60 0.10 0.20 0.40 0.30 0.10
Error Variance 0.20 0.30 0.10 0.15 0.25 0.05

Table 3: Modification A on partial MI. Error term variances invariant across groups, latent
variances equal to Φ1 = 1, Φ2 = 4, Φ3 = 4, respectively.

Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6
Loading in Group 1 0.30 0.10 0.20 0.40 0.60 0.20
Loading in Group 2 0.30 0.10 0.20 0.40 0.30 0.10
Loading in Group 3 0.60 0.10 0.20 0.40 0.30 0.10
Error Variance 0.20 0.30 0.10 0.15 0.25 0.05

Table 4: Modification B on partial MI. Error term variances invariant across groups, latent
variances equal to Φ1 = 4, Φ2 = 16, Φ3 = 4, respectively.

the original loadings in the third group, and accordingly reducing the latent variance from

4 to 1. Again, this modification is empirically indistinguishable from the original setup, but

now the indicators 5 und 6 are characterized by invariant factor loadings.

From the above, it becomes clear that, based on data only, it is impossible to infer which

indicators are truly invariant: the above discussed models constitute four cases that cannot

be told apart empirically, but sometimes there are no invariant loadings at all, sometimes

only the first indicator’s loadings are invariant, sometimes those of indicators 2, 3, and 4, and

sometimes those of indicators 5 and 6.

Although it is impossible to infer the invariant factor loadings from data only, we still

can learn a lot from properly studying given data. In order to exemplify this, we simulated

1,000 replications of the above described example and estimated the corresponding configural

model using different scaling methods. In particular, we used all indicators in turn as referent

indicators by enforcing the corresponding loading to be equal to unity in all groups. Further-

more, we additionally estimated the model using the effects coding method. Table 6 shows

Ind. 1 Ind. 2 Ind. 3 Ind. 4 Ind. 5 Ind. 6
Loading in Group 1 0.30 0.10 0.20 0.40 0.60 0.20
Loading in Group 2 0.60 0.20 0.40 0.80 0.60 0.20
Loading in Group 3 1.20 0.20 0.40 0.80 0.60 0.20
Error Variance 0.20 0.30 0.10 0.15 0.25 0.05

Table 5: Modification C on partial MI. Error term variances invariant across groups, latent
variances equal to Φ1 = 4, Φ2 = 4, Φ3 = 1, respectively.
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I1 I2 I3 I4 I5 I6 EC
λ11 1.0000 3.0406 1.5007 0.7509 0.5001 1.5018 0.9998
λ21 0.3351 1.0000 0.5021 0.2513 0.1674 0.5026 0.3343
λ31 0.6680 2.0282 1.0000 0.5011 0.3337 1.0021 0.6672
λ41 1.3340 4.0501 1.9996 1.0000 0.6663 2.0009 1.3322
λ51 2.0029 6.0816 3.0021 1.5022 1.0000 3.0043 2.0002
λ61 0.6671 2.0260 1.0000 0.5003 0.3332 1.0000 0.6663
φ1 0.3598 0.0409 0.1602 0.6382 1.4388 0.1596 0.3596

λ12 1.0000 3.0142 1.4993 0.7505 1.0000 3.0023 1.2857
λ22 0.3333 1.0000 0.4995 0.2500 0.3331 1.0003 0.4282
λ32 0.6674 2.0110 1.0000 0.5007 0.6672 2.0032 0.8579
λ42 1.3330 4.0168 1.9980 1.0000 1.3327 4.0010 1.7135
λ52 1.0006 3.0151 1.4998 0.7507 1.0000 3.0033 1.2862
λ62 0.3334 1.0047 0.4997 0.2501 0.3333 1.0000 0.4285
φ2 1.4385 0.1603 0.6405 2.5542 1.4395 0.1599 0.8700

λ13 1.0000 6.1345 3.0005 1.5000 2.0032 6.0054 2.1178
λ23 0.1657 1.0000 0.4970 0.2484 0.3317 0.9948 0.3505
λ33 0.3338 2.0470 1.0000 0.5006 0.6685 2.0043 0.7068
λ43 0.6673 4.0910 2.0015 1.0000 1.3361 4.0058 1.4127
λ53 0.5001 3.0660 1.5002 0.7499 1.0000 3.0024 1.0587
λ63 0.1670 1.0243 0.5010 0.2504 0.3345 1.0000 0.3536
φ3 1.4394 0.0401 0.1605 0.6406 0.3603 0.0402 0.3209

Table 6: Results of Monte Carlo study on partial MI. ’I1’ through ’I6’ refers to fixed marker
scaling using indicators 1 through 6 as referent indicators, while ’EC’ denotes ’effects coding’.
The table reports the averaged estimates of the corresponding model parameters, the average
being taken over 1,000 runs of Model 2.

the corresponding results.

Using the first indicator as referent indicator, it seems that only this first indicator’s

loadings are invariant across groups. However, as the corresponding loadings were fixed at

unity from the outset, this is no conclusive evidence of the first indicator’s invariance, as has

been pointed out namy times in the literature. The more interesting fact here is that no

other indicator appears to have invariant factor loadings when the first indicator is used as

referent indicator. In this sense, the corresponding results can be interpreted as reflecting

modification A given in Table 3.

When indicators 2, 3, or 4 are used as referent indicators, Table 6 conveys the impression

that only the loadings of these indicators are invariant. Again, this is completely in line with

the corresponding modification B given in Table 4. In the literature, the set {2, 3, 4} has

sometimes been called an ’invariant set’ of indicators, see e.g. Rensvold and Cheung (1998).

In light of the previous discussion, we argue that a better name would be ’proportional set’,
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as the loadings of indicators 2, 3, and 4 behave proportionally over the groups, but from this,

one must not conclude that they are actually invariant.

Upon using indicators 5 or 6 as referent indicators, Table 6 suggests that only indicators

5 and 6 are characterized by invariant loadings, completely in line with modification C given

in Table 5. Similar to above, we propose to call {5, 6} a proportional set of indicators.

Finally, when effects coding is used, Table 6 creates the impression that no indicator

possesses invariant loadings, a conclusion which is in line with the original setup as given by

Table 2.

Overall, the simulation shows that it is well possible to detect the ’proportional sets’,

i.e. those subsets of indicators whose loadings behave proportionally across groups. One

method to find these proportional sets is to estimate the model using in turn all indicators as

referent indicators and then check which indicators appear to have invariant loadings. Another

possibility would be to estimate the model only once, using an arbitrary scaling method, and

then compute the ratios of one indicator’s loadings over another indicator’s loadings. For

instance, the ratios of the second over the third indicator’s loadings is approximately 0.5 in

all groups in Table 6, regardless of which scaling method is used, in line with the corresponding

ratios in Tables 2-5.

However, even though one may identify the proportional sets, it still is impossible to learn

from data only which, if any, of these sets actually corresponds to invariant factor loadings.

In applications, such a conclusion cannot be based purely on the data, but must be drawn

from other reasons like theory or previous empirical results.

7 Conclusion

In this paper, we have shed new light on the topic of metric measurement invariance. In

particular, we have introduced the notion of proportional factor loadings (PFL), which is

given when loadings across groups coincide only up to multiplicative constants. We found

that it is impossible to tell apart metric MI from PFL and that testing for metric MI is

actually tantamount to testing for PFL. Researchers therefore should be aware of the fact

that when metric MI is not rejected, an additional assumption is necessary to proceed from

PFL to metric MI. This additional assumption must be backed by theory or earlier empirical

results, it can not be justified on the data at hand.

Researchers should also be aware of the fact that tests for invariance of latent variances

may be severely distorted and lead to completely wrong conclusions when the data generating

process only satisfies PFL, but not metric MI.

Finally, proportional factor loadings are also important to understand some phenomena
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related to partial MI. With respect to partial MI, the most important insight of this paper is

that from data alone, it is not possible to infer which indicators’s loadings are invariant and

which are not. Instead, empirical data only allows to find subsets of indicators whose loadings

are proportional across groups: in analogy to the term ’invariant sets’ used in the literature,

these sets are called ’proportional sets’. Thus, while statistics, by detecting proportional sets,

can help the researcher to find out which indicators behave similar by loading proportionally

across groups, it is up to the researcher to decide, guided by theory or earlier empirical

research, which of these proportional sets may be assumed to be an ’invariant set’.
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