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Abstract

We propose a concept of intraday overreaction characterized by
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close return volatility. As a one-sided concept it allows to distinguish

between upward and downward overreaction. A test for overreaction
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1 Introduction

Since the pioneering papers by Shiller (1984) and De Bondt and Thaler (1985)
a large volume of theoretical and empirical research work has analyzed price
overreaction in financial markets reflecting market inefficiency. Typically, the
literature closely links price overreaction to forecastability of stock prices and
the prospect for investors to earn above-average returns.

Given the rapidly growing empirical evidence of forecastable components
of equity prices, however, financial economists have emphasized that in the
context of intertemporal models providing for variation of required returns
over time, forecastability is not necessarily inconsistent with the concept of
market efficiency, see, among others, Fama and French (1988) and Balvers
et al. (1990). Thus, it has been argued that predictable variations in long-
term stock returns over a horizon of several years, resulting in profitable
contrarian investment strategies as in the analysis of De Bondt and Thaler
(1985), need not to be attributed to overreaction to extreme situations and
a tendency to overweigh current information, or to other deviations from
rationality, as for example considered by Barberis et al. (1998), but can be
renconciled with market efficiency.

In order to distinguish stock price overreaction and market ineffiency from
predictable changes in expected returns, Lehman (1990) suggested to ex-
amine returns over short time intervals.1 In fact, the focus on long-term
dynamics in stock returns in the papers by Shiller (1984) and De Bondt and
Thaler (1985) was realigned to short-run return behavior, ranging over time
periods from a few days up to a month, in the major part of the subsequent
literature, including, for example, Zarowin (1989), Atkins and Dyl (1990),
Cox and Peterson (1994), Park (1995), Bowman and Iverson (1998), and
Nam et al. (2001). Factors such as seasonal (e.g., January), firm size, and
bid-ask bounce effects have been a major concern of the research on short-
term overreaction, both with respect to sample selection bias in identifying
large price change events, and with respect to the construction of ”winner”
and ”loser” portfolios for evaluating the relative profitability of a contrarian
strategy which builds on a reverting behavior of stock prices in the short run.

1Lehman argues that systematic reversals in fundamental valuation over intervals like a

week should not occur in efficient markets, instead ”asset prices should follow a martingale

process over very short time intervals even if there are predictable variations in expected

security returns over longer horizons”, see Lehman (1990, p. 2).
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In this paper we consider the measurement of intraday overreaction of stock
prices. Besides our focus on the very short-run behavior of stock prices the
proposed methodology differs from the previous research in several aspects.
Firstly, by using a concept of relative overreaction, which compares the ex-
tremal intraday price fluctuation with the open-close price change, we do not
concentrate on the price movements following large price change events, but
rather take a full sample of subsequent trading days. Secondly, in develop-
ing our concept, we do not consider the profitability of contrarian intraday
trading strategies, but prefer a more direct approach for analyzing the in-
traday price movements. More generally, we do not rely on any connection
between price overreaction and forecastability, or any identification of non-
forecastability with market efficiency.2

The crucial point for our attempt to identify intraday price overreaction di-
rectly from the analysis of the price process is to find an adequate measure
of intraday excess volatility and to legitimate some benchmark behavior for
this measure. We propose to use as separate measures of intraday upside
and downside volatility the respective test statistics for Brownian motion,
introduced in Becker et al. (2007), which follow an F−distribution under
the assumption of a Brownian process for the log-prices. These measures
capture the deviation of daily high and low prices from the starting and
end point of the intraday price movement, normalized by the open-close re-
turn volatility. As Brandt and Diebold (2006) have emphasized, using daily
open, close, high, and low prices, instead of ultra-high frequency returns, has
the advantage that these data not only are widely available, in many cases
over long historical spans, but also yield results being fairly robust against
micromarket structure noise arising from bid-ask spread and asynchronous
trading. Furthermore, the proposed one-sided concept, which allows to dis-
tinguish between upward and downward overreaction, has the advantage to
potentially detect asymmetric return behaviour.

While the Brownian motion assumption may be considered as too restrictive

2Shiller (1984) represents a notable exemption in the literature when he rejects the

argument for the efficient market hypothesis, that because real returns are nearly un-

forecastable, the real price of stocks is close to the intrinsic value, as one of the most

remarkable errors in the history of economic thought. Posing the question, why specula-

tive asset prices fluctuate as much as they do, he insists on the important role of ”fads”,

misperceptions of information, and psychologically driven price movements, irrespective

of whether these price components are predictable or not.
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at first view, we show that the implied behavior of our measures holds under
much more general conditions. In particular, the distribution of the proposed
measures of upside and downside volatility remains unaffected, when we allow
for any intraday seasonal volatility pattern, such as the frequently observed
U-shape of intraday volatility. Furthermore, the behavior of the proposed
measures is shown to be conservative with respect to the benchmark behav-
ior under a Brownian motion for a wide range of intraday price processes,
including discrete random walks with leptokurtic increments, Merton jump
diffusions (Merton (1976)), or variance gamma processes. With respect to
another class of processes, including variation of the volatility parameter ac-
cording to an interday GARCH model, we obtain results on the robustness
of the distribution of the proposed statistics. On the other hand, for price
processes featuring non-persistent price changes and mean reversion, such
as an Ornstein Uhlenbeck log-price process, our test identifies overreaction.
Comparing these results with our empirical findings, we claim to provide
strong evidence for intraday overreaction to bad news.

The paper is organized as follows. Section 2 presents formal definitions for
the suggested measures of upside and downside volatility, together with some
basic properties under the assumption of a Brownian motion for the log-price
process. In section 3 we provide some theoretical results on the distribution
of the proposed measures for more general classes of stochastic price pro-
cesses.

Our empirical findings in section 4 are based on the analysis of daily open,
high, low, and close price data for the components of the S&P500, including
the constituents of the Dow Jones Industrial Average, and on the 30 shares
included in the German XETRA DAX. Generally, for the majority of in-
dividual shares we find highly significant increases of normalized downside
volatility as compared with the benchmark. This is considered as strong
evidence for intraday overreaction with respect to bad news. To further
illustrate the discrimination obtained by the test results, we compare the
in-sample performance of shares, for which our test indicates overreaction on
bad news, with the performance of the other shares, under a ”buy on bad
news” intraday trading strategy. We conclude with a summary in section 5.
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2 Intraday upside and downside volatility

For any trading day n = 0, 1, 2, . . . we consider the movement of the log-price
P (t) of a security from the opening of the market at time tn until market close
at tcn. Taking the length of the daily trading time, tcn−tn, as the time unit we
have tcn = tn+1, where tn+1 ≥ tn+1. Using data on the daily open, high, low,
and close log-prices, P o

n = P (tn), P
h
n , P l

n, and P c
n = P (tn + 1), respectively,

we define measures Vn,max (Vn,min) of intraday upside (downside) volatility
as

Vn,max = 2 (P h
n − P o

n)(P h
n − P c

n), (1)

Vn,min = 2 (P o
n − P l

n)(P c
n − P l

n). (2)

Both Vn,max and Vn,min are nonnegative and can be considered as measuring
the distance of the daily extremal prices from open and close price. If the
intraday return process is denoted with

Xn(t) := P (tn + t) − P (tn), 0 ≤ t ≤ 1, (3)

with the intraday final returns Xn and intraday maximal (minimal) returns
Yn,max (Yn,min) given as

Xn := Xn(1) = P c
n − P o

n , (4)

Yn,max := sup
0≤t≤1

Xn(t) = P h
n − P o

n , (5)

Yn,min := inf
0≤t≤1

Xn(t) = P l
n − P o

n , (6)

the definitions of intraday upside and downside volatility can be rewritten
equivalently as

Vn,max = 2 Yn,max(Yn,max − Xn), (7)

Vn,min = 2 Yn,min(Yn,min − Xn). (8)

Under the benchmark assumption that the intraday log-price process fol-
lows a Brownian motion with drift rate µn and volatility σn, the suggested
measures of intraday upside and downside volatility have some attractive
properties, which are summarized in the following lemma.

Lemma 1: If the intraday log-price process at day n follows a Brownian
motion with drift parameter µn and volatility σn, intraday upside (down-
side) volatility Vn,max (Vn,min) satisfy the following properties:
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(i) The distribution of Vn,max (Vn,min) is drift independent with

E(Vn,max) = E(Vn,min) = σ2
n.

(ii) The distribution of χ2 = 2Vn,max/σ
2
n (χ2 = 2Vn,min/σ

2
n) is chi-square

with two degrees of freedom.

(iii) Vn,max (Vn,min) is stochastically independent of the contemporary intra-
day final return Xn.3

(iv) The distribution of the ratios obtained by normalizing upside (down-
side) volatility with the variance estimate of the intraday open-to-close
return,

Fn,max =
Vn,max

(Xn − µn)2
, and Fn,min =

Vn,min

(Xn − µn)2
, (9)

is an F−distribution with two degrees of freedom in the numerator and
one degree of freedom in the denominator.

Proof. See Yor (1997) and Becker et al. (2007).

Notice that the proposed measures of upside (downside) volatility as well
as the intraday final return volatility used for normalization in (9) refer to
the daily trading period from market open to market close. Hence, price
changes from the market close price to the next open price (opening jumps),
which are important to account for in estimating the common close-to-close
return volatility using intraday high and low prices, do not interfere with our
analysis.

For a sample of daily open, high, low, and close prices over N days we define
the following test statistics for intraday overreaction4

3Notice that, although each of the random variables Vn,max, Vn,min is independent of

the final return Xn, the vector (Vn,max, Vn,min) is not jointly independent of Xn. Further-

more, the joint distribution of (Vn,max, Vn,min) and in particular the correlation between

Vn,max, Vn,min depends on the drift rate. This follows from the joint trivariate distribution

of the final return, and the minimal and maximal return, see Billingsley (1968), p. 79.
4For the sake of an intuitive interpretation of the test statistics as measures of intraday

overreaction we have taken the inverse of the F−statistics which were originally proposed

in Becker et al. (2007). This should be kept in mind, in particular with respect to the

results of small sample power studies, to which we refer below.
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FN,max =

1
N

N∑
n=1

Vn,max

1
N−1

N∑
n=1

(Xn − X̄)2

and FN,min =

1
N

N∑
n=1

Vn,min

1
N−1

N∑
n=1

(Xn − X̄)2

, (10)

which are called ”volatility ratios” in the following. Thus, the volatility ra-
tios give the mean upside (downside) volatility, normalized by the ordinary
estimator of the intraday return variance. According to lemma 1, under
the null hypothesis that the intraday log-price processes at different days
follow independently distributed Brownian motions with constant drift rate
µ and volatility parameter σ2 the distribution of the volatility ratios is an
F−distribution with 2N degrees of freedom in the numerator and N − 1
degrees of freedom in the denominator.

As Becker et al. (2007) mention, Brownian motion implies a continuous flow
of news, which all have a persistent impact on the log-price. Accordingly,
if log-prices follow a Brownian motion, there is no overreaction, as the in-
fluence of news does not die out. This is different for Ornstein-Uhlenbeck
processes, which exhibit a mean-reverting, stationary behaviour and corre-
spond to non-persistent news, whose impact is very likely to be corrected due
to the mean-reversion. Therefore, OU processes can be considered as describ-
ing overreaction. For OU processes and for ’overreacting’ prices in general
we expect the volatility ratio to be significantly higher than in the bench-
mark case of Brownian motion, because given the same level of extremal
values Yn,i, the ’overreacting’ process will tend back to the initial level with
higher probability than Brownian motion does, thereby resulting in a lower
daily variance than that of Brownian motion. Therefore it is possible to test
for overreaction by testing whether the volatility ratios FN,i are significantly
higher than in the benchmark case. For some simple Ornstein-Uhlenbeck
processes this has been done by Becker et al. (2007), who found that this
test for overreaction has good power against the alternative of OU processes.

In the following section we consider the distribution of the proposed mea-
sures of intraday overreaction under more general, alternative assumptions
for the intraday price processes.
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3 Robustness of volatility ratios

First of all, we mention robustness results obtained by Becker et al. (2007),
regarding the effects of interday variation of the drift and volatility parame-
ters: variation of the volatility parameter leads asymptotically to only a small
perturbation of the test statistic’s distribution (see Becker et al. (2007), p.
10), whereas variation of the drift parameter shifts the test statistic to the
left, resulting in an asymptotic probability of 0 for wrongly detecting over-
reaction (for details, esp. small sample properties, see Becker et al. 2007, p.
12-13).

With respect to intraday deviations from Brownian motion we start our
analysis by considering the effect of well-known typical intraday volatility
patterns such as deterministic U-shaped intraday seasonality (see, e.g., An-
dersen and Bollerslev (1997)). A deterministic intraday seasonality in volatil-
ity, described by a (U-shaped) function

φ : [0, 1] → IR, t 7→ φ(t), (11)

can be modelled by subjecting Brownian motion to the (deterministic) time
change

T (t) :=

t∫

0

φ(u)du, (12)

i.e. by modelling intraday returns as time-changed Brownian motion,

Xn(t) = Wn(T (t)), (13)

with Wn being a Brownian motion with drift µ and volatility σ2 for every
day n. In this case, high-frequency returns from t to t+h will have volatility

σ2
t+h∫
t

φ(u)du, which approximately equals σ2φ(t)h for small h, reflecting the

intraday seasonality. For processes of this kind, the following lemma holds:

Lemma 2: If returns follow a time-changed Brownian motion with a de-
terministic continuous time change T , the distribution of the volatility ratios
FN,max and FN,min is still F2N,N−1.

Proof: Because of T (0) = 0 and the continuity of T , the paths of Xn =
(Wn(T (t)))t∈[0,1] take the same values as those of (Wn(τ))τ∈[0,T (1)], which com-
pletes the proof due to the well-known scaling properties of Brownian motion.
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According to the previous lemma, the proposed F -test is not affected by
intraday volatility patterns, quite in contrast to some other tests, as for in-
stance variance ratio tests (see Andersen et al. (2001)). In the following,
we generalise (12) by allowing for non-continuous as well as random time
changes.

Example: For instance, consider the non-continuous, deterministic time
change

T (t) := c⌊tL⌋ (14)

for c > 0, L ∈ IN, which is constant on [ l−1
L

, l
L
[ and jumps by c on l

L
,

l = 1, ..., L. The corresponding time-changed Brownian motion obviously is
just a subsampling of the Brownian motion at the points 0, c, 2c, ..., Lc, in
other words it is an L-step random walk with N(µc, σ2c)-distributed inno-
vations. L-step random walks have been considered by Becker et al. (2007)
(cf. their table 2, p. 175), esp. with respect to small sample properties of
the F -test and other innovations’ distributions.

Example:

The following time-change is an example for a random, non-continuous time
change:

T (t) := c1t + c2N(t), (15)

where c1, c2 > 0 and N is a Poisson process with intensity λ. It is easily seen
that for an independent Brownian motion Wn with drift µ and volatility σ2,
the time-changed Brownian motion

X(n, t) := Wn(T (t)) = Wn(c1t + c2N(t)) (16)

will be a Merton jump-diffusion consisting of

• a Brownian motion with drift µc1 and volatility σ2c1,

• a jump-component with jump intensity λ and N(µc2, σ
2c2)-distributed

jumps.

Apart from theoretical asymptotical results, which will be given later (see
Theorem 1 below), we conducted MC studies to investigate the small sam-
ple properties of the volatility ratios FN,min, FN,max. Because Merton jump-
diffusions are Lévy processes (see, e.g., Cont and Tankov (2004)), FN,min

and FN,max are identically distributed (see Klößner (2006)), so that we can

5Notice that there significant downside deviations of F from F2N,N−1 have been tested.
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limit our MC studies to FN,min. In our simulation studies, we chose different
settings of the following parameters:

• the drift rate µBM and the diffusion volatility σ2
BM of the Brownian

motion,

• the jump intensity λ,

• the mean µJ and the variance σ2
J of the N(µJ , σ2

J)-distributed jump
sizes.

Thus, the return Xn over the unit period is distributed as

Xn ∼ N(µ, σ2) with µ = µBM + λµJ , σ2 = σ2
BM + λσ2

J + λµ2
J . (17)

For the Monte Carlo simulation of the Merton model the jump intensity λ
is varied over λ = 0.01, 0.1, 1, 5, 10, corresponding to an average occurence
of one jump in one hundred days, one jump in ten days, one jump per day,
five jumps per day, and ten jumps per day, respectively. We denote the
proportion of the contribution of the jumps to Var(Xn) by ρ,

ρ =
λσ2

J + λµ2
J

σ2
BM + λσ2

J + λµ2
J

. (18)

In our simulation study ρ takes the values ρ = 0.1, 0.25, 0.5. We assume
µ = 0, hence µJ = −µBM/λ, first with µBM = 0 and, as another case, with
µBM = 0.03. With normalization by σ2 = 1, for a fixed variance proportion
ρ, the variance of the jump size varies with the jump intensity,

σ2
J =

ρ

λ
− µ2

J =
ρ

λ
− µ2

BM

λ2
. (19)
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Table 1:
Overreaction detection for Merton jump-diffusion (right-sided test, α = 5%)

µJ = µBM = 0 (N = 250)

ρ λ = 0.01 λ = 0.1 λ = 1 λ = 5 λ = 10

0.1 2.35 2.17 3.23 3.91 4.25
0.25 1.24 0.36 0.80 2.31 2.87
0.5 0.92 0.04 0.06 0.23 0.68

µJ = −0.03/λ, µBM = 0.03, Fmin − test (N = 250)

ρ λ = 0.01 λ = 0.1 λ = 1 λ = 5 λ = 10

0.1 1.89 2.03 3.63 4.20 4.35
0.25 1.42 0.33 0.85 1.98 2.59
0.5 1.09 0.00 0.04 0.33 0.60

Rejection frequencies (FN,min > F2N,N−1,0.95) in 10,000 replications in percent.

Generally, according to our simulation results and in complete accordance
with the asymptotic results of Theorem 1, imposing price jumps on the Brow-
nian motion leads to a decrease of the volatility ratios. From Table 1 it can
be seen that Merton jump-diffusion as data generating process implies fre-
quencies of detecting overreaction of less than 5%, if the test is calibrated to
the 5% level. It even is possible, by checking for significantly small F -values,
to discriminate between Merton jump-diffusions and Brownian motion, as
Table 2 reveals.

Table 2:
Merton jump-diffusion vs. Brownian motion (left-sided test, α = 5%)

µJ = µBM = 0 (N = 250)

ρ λ = 0.01 λ = 0.1 λ = 1 λ = 5 λ = 10

0.10 21.79 13.07 8.01 6.23 5.85
0.25 49.32 48.28 20.90 11.69 9.37
0.50 71.06 94.80 75.72 37.64 25.36

µJ = −0.03/λ, µBM = 0.03 (N = 250)

ρ λ = 0.01 λ = 0.1 λ = 1 λ = 5 λ = 10

0.10 20.47 13.04 7.83 6.34 5.81
0.25 50.17 47.81 21.63 11.11 9.87
0.50 71.83 94.75 76.24 36.70 25.28

Rejection frequencies (FN,min < F2N,N−1,0.05), in 10,000 replications in percent.
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In the following, we investigate theoretically the impact of time-changing
a Brownian motion by any independent time change. Recall for this pur-
pose the definition of a time change as an increasing càdlàg process T with
T (0) = 0 (e.g. Cherny and Shiryaev (2002)). As the next theorem shows,
there are two important (non-distinct) cases, where the volatility ratios are
shifted to the left, resulting in an asymptotic probability of 0 for the F -test
to indicate overreaction.

Theorem 1: Let Wn be independent Brownian motions with drift µ and
volatility σ2 for each day n and Tn be iid time changes with existing second
moment that are independent of the Brownian motions Wn. If

• µ 6= 0 and Tn is not deterministic or

• Tn is non-continuous with positive probability,

then for the time-changed returns

Xn(t) := Wn(Tn(t)), (20)

the volatility ratio

FN,i =

1
N

N∑
n=1

Vn,i

1
N−1

N∑
n=1

(Xn − X)2

(21)

converges for N → ∞ a.s. towards some constant Ci < 1 for i = max, min.

Proof: Provided that E (Vi) and Var (X) are finite6, the strong law of large

numbers tells us that FN,i converges a.s. to
E (Vi)

Var (X)
. Thus, the proof will

be complete if we have shown

E (Vi) < Var (X) < ∞ for i = max, min . (22)

Using the notations µT := E (T (1)), σ2
T := Var (T (1)), we have:

• E (X) = E (W (T (1))) = E (E (W (T (1))|T (1))) = E (µT (1)) = µ µT ,

• E (X2) = E (E (W (T (1))2|T (1))) = E ((µT (1))2 + σ2T (1))
= µ2(σ2

T + µ2
T ) + σ2µT ,

6For notational simplicity, we omit the index n.
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• Var (X) = E (X2) − (E (X))2 = µ2σ2
T + σ2µT < ∞.

For a given realisation of the time change we consider now

• Ymax = sup
0≤t≤1

X(t) = sup
0≤t≤1

W (T (t)) = sup
τ∈T ([0,1])

W (τ) and

• Ỹmax := sup
τ∈[0,T (1)]

W (τ).

Obviously, Ỹmax ≥ Ymax, with the inequality being strict with positive prob-
ability if T is non-continuous. Together with

Ymax(Ymax − X) = Ỹmax(Ỹmax − X) − (Ỹmax − Ymax)(Ỹmax + Ymax − X),

this implies for Vmax = 2 Ymax(Ymax − X) the inequality

Vmax ≤ 2 Ỹmax(Ỹmax − X) =: Ṽmax,

with the inequality again being strict with positive probability if T is non-
continuous. Due to the scaling properties of Brownian motion and the in-
variance of the distribution of Vmax with respect to the Brownian motion’s
drift rate, Ṽmax is distributed as σ2T (1)χ2

2/2 conditional on T , which implies

E
(
Ṽmax

)
= σ2µT . Summing up, we have

E (Vmax) ≤ σ2µT ≤ σ2µT + µ2σ2
T = Var (X) < ∞,

where

• the first inequality is strict if the time-change T is non-continuous with
positive probability and

• the second inequality is strict if µ 6= 0 and the time-change is non-
deterministic,

which completes the proof for FN,max. The proof for FN,min follows in a com-
pletely analogous manner. ⋄

Under the assumptions of Theorem 1, the volatility ratios converge so some
constants smaller than 1, whereas F2N,N−1 converges to 1. Thus, the proba-
bility that the F -test (wrongly) indicates overreaction will vanish asymptot-
ically.
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Time changes have been introduced to the finance literature by Clark (1973).
They have recently been reconsidered by many authors, see e.g. Ané and Ge-
man (2000), Geman (2005) and Andersen et al. (2007). Typically, τ := T (t)
is interpreted as ’business’ or ’financial’ time, as opposed to t as ’physical’
time. Many processes can be written as time-changed Brownian motions with
an independent time-change, including VG (variance gamma) processes, NIG
(normal inverse Gaussian) processes and many others (see, e.g., Geman et al.
(2001)).

The next theorem states the asymptotic properties of the overreaction test
for the remaining case of a non-deterministic, a.s. continuous time change
for a Brownian motion with zero drift. Inspection of the proof of the previ-
ous theorem reveals that in this case the volatility ratios will converge to 1,
which does not allow to draw conclusions about the asymptotic significance
level of the overreaction test. That’s why we study the behaviour of

ZN,i :=
3N√

3N − 2

1
N

N∑
n=1

Vn,i − 1
N−1

N∑
n=1

(Xn − X)2

2 1
N

N∑
n=1

Vn,i + 1
N−1

N∑
n=1

(Xn − X)2

(23)

for i = max, min. It is easily seen that Z is a monotone transformation of F :

ZN,i =
3N√

3N − 2

FN,i − 1

2FN,i + 1
=

3N√
3N − 2

(
1

2
− 3/2

2FN,i + 1

)
.

From Becker et al. (2007), we know that under the benchmark assumption of
Brownian motion the exact distribution of ZN,i is a Beta distribution, which
converges to the standard normal distribution as N → ∞. Therefore, testing
for overrreaction by comparing FN,i to a quantile of the F2N,N−1-distribution
is asymptotically equivalent to comparing ZN,i to the corresponding normal
quantile.

Theorem 2: Let Wn be independent Brownian motions with zero drift
and volatility σ2 for each day n and Tn be iid non-deterministic, a.s. contin-
uous time changes with existing second moment that are independent of the
Brownian motions Wn. Then for the time-changed returns

Xn(t) := Wn(Tn(t)), (24)

the test statistic

ZN,i =
3N√

3N − 2

1
N

N∑
n=1

Vn,i − 1
N−1

N∑
n=1

(Xn − X)2

2 1
N

N∑
n=1

Vn,i + 1
N−1

N∑
n=1

(Xn − X)2

(25)
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converges towards N(0, 1 + γ) as N → ∞ for i = max, min, where

γ =
Var (Tn(1))

(E (Tn(1)))2
.

Proof: From the proof of the previous theorem we know for i = max, min:

• E (X) = 0, Var (X) = E (X2) = σ2µT as well as

• E (Vi) = σ2µT .

Thus, the second denominator in (25) converges a.s. to 3 σ2µT . The second
nominator can be decomposed into7

1

N

N∑

n=1

Vn − 1

N − 1

N∑

n=1

(Xn − X)2 = V − X2 − X2

N − 1
+

N

N − 1
X

2
.

Because X2 converges a.s. to Var (X) < ∞ and (
√

NX)2 converges in dis-
tribution to Var (X)χ2

1, both the terms

• 3N√
3N − 2

X2

N − 1 and

• 3N√
3N − 2

N
N − 1X

2

converge to 0 in distribution. That’s why it suffices to investigate the limit
distribution of

3N√
3N − 2

V − X2

3 σ2µT

,

which will be normal due to the central limit theorem. The theorem now
follows from

Var
(
V − X2

)
= 3 σ4(σ2

T + µ2
T ),

which can be seen after some simple, but tedious calculations using the fol-
lowing facts from lemma 1:

• the conditional distribution of V given T (1) is σ2T (1)χ2
2/2,

• the conditional distribution of X given T (1) is N(0, σ2T (1)),

7We omit the index i = max, min.
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• V and X are independent conditional on T (1).

⋄

The result of Theorem 2 resembles very much the result for interday varying
volatility by Becker et al. (2007). It holds exactly for the so-called Ocone mar-
tingales, as can be seen from Proposition 3.6 by Cherny and Shiryaev (2002),
who also state that stochastic volatility processes of the form

∫
σudWu with

a Brownian motion W and an independent stochastic volatility process σ
belong to this class (Cherny and Shiryaev (2002), Exercise 2.2).

4 Empirical findings

Our analysis uses daily price data (open, high, low, close) for the components
of the S&P500, with a closer look on the 30 components which are also in-
cluded in the Dow Jones Industrial Average (DJIA), furthermore daily quotes
for the 30 securities included in the German XETRA DAX. The presented
results refer to a sample of N = 1000 daily price vectors up to November
30, 2005, starting in December 2001.8 From using other time periods and
sample sizes we find that our conclusions do not substantially depend on the
selected time period.

Generally for every security in our analysis we compute the test statistics
Fmin, Fmax, as defined in (10), giving the normalized downside volatility and
upside volatility, respectively. Our focus is on testing for overreaction through
a right-sided F−test. From our analysis in the previous section we know that
common features of intraday price movements such as discrete information
arrival and jumps pull the volatility ratios downside. Despite this fact, we
find considerable evidence for short run overreaction in the case of bad news.

Regarding the S&P500 components, for 258 (52.4%) of the companies the
normalized downside volatility Fmin is greater than the 5%−critical value
F2N,N−1,0.95 = 1.095, and there are still 220 (44.7%) significant at the 1%
level. On the other hand, the normalized upside volatility Fmax does not
indicate comparable non-persistent upside price movements, with only 39
(7.9%) of the test statistics exceeding the 5%−critical value, of which 23

8We have excluded 8 out of the set of 500 shares of the S&P500 portfolio, because the
available sample size is less than N = 1000; the excluded shares are AMP, CIT, FSL-B,
GNW, HSP, MHS, PRU, SHLD.
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Figure 1: Distribution of volatility ratios Fmin, Fmax for S&P500 shares

(4.7%) remain to be significant at the 1% level. The distribution of the test
statistics Fmin and Fmax is shown in figure 1.

To further illustrate the discrimination obtained by the test statistic Fmin,
we compare the in-sample performance of shares, for which our test statistic
indicates overreaction to bad news, with the performance of the other shares,
under a ”buy on bad news” intraday trading strategy. More specifically, the
”buy on bad news” strategy, applied to an individual share with estimated
volatility parameter σ̂, means to buy at a price decline by σ̂ and to sell at the
close price of the same day. Thus the return of this trading strategy is Xn+ σ̂
on days where such a price decline occurs, i.e., if Yn,min ≤ −σ̂, and zero on
days where Yn,min > −σ̂ and no buy-signal is triggered. The performance of
the ”buy on bad news” trading strategy is evaluated by the mean annualized
return of a share under this strategy. In order to get an impression of the
robustness of the results, we split the sample into four subsamples, each with
a sample size of 250 days. For each of the four subsamples the shares are
ordered according to the value of the Fmin statistic. Figure 2 compares the
distribution of mean annualized returns under the ”buy on bad news” intra-
day trading strategy for the upper quintile of shares, which are all significant
at the 1% level even for the reduced sample size, with the respective return
distribution of the lower quintile. For comparison, figure 2 also displays the
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Figure 2: Distribution of annualized returns under a ”buy on bad news”
intraday trading strategy

return distribution for all shares.

For those of the S&P500 components which constitute the DJIA, the test
results for Fmin and Fmax are given in table 3. The normalized downside
volatility Fmin leads to significant overreaction at the 5% level for 22 (73.3%)
of the shares, while Fmax indicates significant upside overreaction only for 3
(10%) of the Dow Jones shares.

As an example for a European stock exchange, we consider the 30 compo-
nents of the German XETRA DAX. The test results are presented in table 4.
Here we find an extremely pronounced asymmetry in downside and upside
volatility. The evidence for downside overreaction is even stronger than for
the DJIA or S&P500 components. For 29 companies (96.7%) Fmin indicates
significant overreaction at the 5% level, and still 26 (86.7%) are significant
at the 1% level. Only for Deutsche Telekom the normalized downside volatil-
ity is quite low. On the other hand, for only three companies (Deutsche
Lufthansa, Deutsche Post and TUI) we find significant upside overreaction.
For 27 (90.0%) of the shares, the normalized upside volatility Fmax is quite
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low and there is no significant upside overreaction.

Finally, in order to ensure that our results are not seriously affected by in-
terday GARCH effects in volatility, we have repeated our analysis of the
S&P500 as well as of the DAX shares, using the modified test statistics (see
Becker et al. (2007), p.14)

F ∗
N,i =

N∑
n=1

Vn,i

σ2
n

N∑
n=1

(Xn−µn)2

σ2
n

(26)

for i = max, min, which are F2N,N -distributed under the null hypothesis of
intraday log-prices being independent Brownian motions with drift rate µn

and volatility σ2
n on day n. For σ2

n we have inserted the conditional variance
obtained from fitting GJR-GARCH(1,1) models (see Glosten et al. (1993)),
and, alternatively, EGARCH(1,1) models (see Nelson (1991)), while the drift
rate is assumed to be constant. In complete accordance with our theoretical
robustness results, the results do not differ significantly from the ones pre-
sented here.9 Thus accounting for interday variation of the volatility param-
eter and leverage effect, the p-values change only slightly and our empirical
results are confirmed.

9Results are available from the authors upon request.
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Table 3: F−test for overreaction (DJIA shares)

Symbol Name Fmin p.Fmin Fmax p.Fmax

AA Alcoa 1.2139 0.0002 0.9750 0.6802

AIG American Intern. Group 1.1499 0.0058 0.8630 0.9967

AXP American Express 1.1155 0.0240 1.0444 0.2161

BA Boeing 1.2164 0.0002 1.0215 0.3517

C Citigroup 1.4841 0.0000 0.9896 0.5782

CAT Caterpillar 1.0909 0.0577 0.8300 0.9997

DD Du Pont 1.1183 0.0216 1.0038 0.4749

DIS Walt Disney 1.4749 0.0000 1.0151 0.3948

GE General Electric 1.2911 0.0000 0.9605 0.7714

GM General Motors 1.0205 0.3582 0.7851 1.0000

HD Home Depot 1.2473 0.0000 1.0592 0.1491

HON Honeywell Intern. 1.2187 0.0002 1.0188 0.3694

HPQ Hewlett−Packard 1.1553 0.0046 1.1330 0.0120

IBM IBM 0.9331 0.8988 0.9857 0.6059

INTC Intel 0.8905 0.9837 0.8932 0.9813

JNJ Johnson & Johnson 1.2054 0.0004 1.2513 0.0000

JPM JPMorgan Chase and Co. 1.1412 0.0085 0.9571 0.7908

KO Coca−Cola 1.1636 0.0031 1.0322 0.2841

MCD McDonald’s 1.1384 0.0096 1.0625 0.1365

MMM 3M Company 1.0297 0.2993 0.8676 0.9956

MO Altria Group 1.0241 0.3344 0.8720 0.9942

MRK Merck & Co. 1.0434 0.2214 0.9610 0.7683

MSFT Microsoft Corp. 0.9048 0.9672 0.9638 0.7521

PFE Pfizer 1.5042 0.0000 0.9684 0.7236

PG Procter & Gamble 1.1335 0.0118 0.9202 0.9370

T AT & T 1.2228 0.0001 1.1258 0.0161

UTX United Technologies 1.1192 0.0209 0.8547 0.9981

VZ Verizon Communications 1.1878 0.0010 0.9777 0.6620

WMT Wal−Mart Stores 1.1446 0.0074 1.0412 0.2331

XOM Exxon Mobil Group 1.1758 0.0017 1.0201 0.3610

Sample size N = 1000 until 2005/11/30, Fmin, Fmax : values of the volatility ratio

(test statistic), bold: signif. at 5% level (right-sided test), F2N,N−1,0.95 = 1.095,

p.Fi = P (F2N,N−1 > Fi), i = min, max.
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Table 4: F−test for overreaction (DAX shares)

Symbol Name Fmin p.Fmin Fmax p.Fmax

ADS.DE Adidas Salomon 1.3063 0.0000 0.9945 0.5427

ALT.DE Altana 1.5093 0.0000 1.0666 0.1217

ALV.DE Allianz 1.1654 0.0029 0.8028 1.0000

BAS.DE BASF 1.5189 0.0000 1.0640 0.1308

BAY.DE Bayer 1.2409 0.0001 0.7490 1.0000

BMW.DE BMW 1.4284 0.0000 0.9569 0.7913

CBK.DE Commerzbank 1.3628 0.0000 1.0303 0.2956

CON.DE Continental 1.5592 0.0000 1.0193 0.3664

DB1.DE Deutsche Boerse 1.4972 0.0000 1.0393 0.2434

DBK.DE Deutsche Bank 1.0984 0.0448 0.8907 0.9834

DCX.DE DaimlerChrysler 1.3978 0.0000 1.0023 0.4860

DPW.DE Deutsche Post 1.7050 0.0000 1.1755 0.0018

DTE.DE Deutsche Telekom 0.9084 0.9614 0.8827 0.9892

EOA.DE E.ON 1.3228 0.0000 1.0136 0.4052

FME.DE Fresenius 1.1206 0.0198 0.8484 0.9988

HEN3.DE Henkel 1.3823 0.0000 0.7466 1.0000

HVM.DE HVB 1.3111 0.0000 0.9479 0.8377

IFX.DE Infineon 1.3185 0.0000 0.9458 0.8476

LHA.DE Lufthansa 1.6595 0.0000 1.1563 0.0044

LIN.DE Linde 1.2444 0.0000 1.0296 0.2999

MAN.DE MAN 1.2774 0.0000 0.8762 0.9926

MEO.DE Metro 1.4772 0.0000 0.9679 0.7266

MUV2.DE Muenchner Rueck 1.1894 0.0009 0.8860 0.9871

RWE.DE RWE 1.4174 0.0000 1.0436 0.2203

SAP.DE SAP 1.1294 0.0139 0.8685 0.9953

SCH.DE Schering 1.4348 0.0000 1.0310 0.2914

SIE.DE Siemens 1.2883 0.0000 0.9348 0.8927

TKA.DE ThyssenKrupp 1.6461 0.0000 1.0762 0.0919

TUI1.DE TUI 1.4440 0.0000 1.1505 0.0057

VOW.DE Volkswagen 1.3030 0.0000 0.9024 0.9706

Sample size N = 1000 until 2005/11/30, Fmin, Fmax : values of the volatility ratio

(test statistic), bold: signif. at 5% level (right-sided test), F2N,N−1,0.95 = 1.095,

p.Fi = P (F2N,N−1 > Fi), i = min, max.
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5 Summary

In this paper we provide empirical evidence for short run, intraday overreac-
tion to bad news for the majority of the constituent shares of the S&P500,
and, even more pronounced, for most of the blue chips which constitute the
DJIA and the German XETRA DAX. Our analysis of overreaction is based
on the measurement of the deviation of daily high and low prices from the
respective open and close prices. Regarding the empirical evidence provided
by the S&P500 shares, the ordering of shares according to the suggested test
statistic for downside overreaction is fairly compatible with their performance
under an intraday ”buy on bad news” strategy.

According to Becker et al. (2007) the proposed upside and downside volatil-
ity ratio follows an F -distribution under the benchmark assumption of a
Brownian motion for the intraday log-price process. Using the concept of
time-changed Brownian motion, however, we have proved that the suggested
F−test for intraday overreaction holds exactly or is even conservative un-
der much more general conditions, including deterministic intraday volatility
patterns, jump-diffusions and discrete information arrival. Further the dis-
tribution of the volatility ratios is shown to be only slightly affected through
interday variation of the volatility parameter. On the other hand short term
mean reversion, which is captured by the model of a (stationary) Ornstein
Uhlenbeck process, is identified to imply overreaction by the proposed test.
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