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Abstract

This paper addresses a source of correlation not discussed in the literature
so far: the geometry of the state space for whose description we develop a new
concept named perfect balancedness. We show that the imbalance of the state
space corresponds to the correlation of the votes of independent voters which takes
positive values for non-perfectly balanced state spaces and vanishes for perfectly
balanced ones.

Next, we show how various measures for success, luck, and decisiveness react to
positive correlation. We then define three measures of power and show that they all
agree with the Banzhaf in the absence of correlation. For correlation converging to
unity, they all approach a newly defined power index, named ’extreme correlation
power index’. Finally, we do some comparative statics w.r.t. the voting rules
and find, in particular, that a powerless voter is best off when the others decide
according to the simple majority rule.
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1 Introduction

In the literature, several explanations for correlated voting have been discussed: common
or opposite preferences, strategic behavior, tacit collusion between members of a voting
body, and common beliefs or standards (Kaniovski 2008a, Kaniovski 2008b). In this
paper we deal with a further source of correlation: the geometry of the state space. We
develop a new concept for the description of the properties of a state space, labeled
perfect balancedness. We show that a perfectly balanced state space is necessary and
sufficient for non-correlation of the votes of independent voters. If a state space is not
perfectly balanced the votes of independent voters are necessarily positively correlated
– which is an unplanned outcome of social interaction.

It is obvious that the answer to the question of whether or not votes are correlated
may have far reaching consequences for the choice of the ’right’ power index in empirical
work. Empirical evidence suggests that positive correlation of votes is a widespread
phenomenon. It could be identified for judicial bodies, such as the U.S. Supreme Court
(Kaniovski & Leech 2009) and the Supreme Court of Canada (Heard & Swartz 1998),
as well as non-judicial bodies, such as the Council of Ministers of the European Union
(Hayes-Renshaw, van Aken & Wallace 2006) and the United Nations (Newcombe, Ross
& Newcombe 1970). Positive correlation could also be observed in general elections
(Gelman, Katz & Boscardin 1998, Gelman, Katz & Bafumi 2004).

To demonstrate the important role played by correlated voting in social choice and
particularly in collective bodies that make yes-or-no decisions by vote (juries, councils,
legislatures, committees, or a shareholders’ meeting and even nation states participating
in a referendum), we analyze the sensitivity of power measures to the geometry of the
state space. The literature on voting power did not address this problem – with one
exception: in 2001, Felsenthal and Machover formulated a proposition that the non-
normalized Strategic Power Index is simply the non-normalized Banzhaf power index
multiplied by a constant that depends on the geometry of the state space (Felsenthal &
Machover 2001, p. 95), which is equivalent to the normalized versions agreeing.

The Banzhaf (Banzhaf 1965, Dubey & Shapley 1979) – originally invented by the
statistician Penrose (1946), Penrose (1952) – indicates the number of times each voter in
a collective body that makes yes-or-no decisions by vote is critical (decisive, pivotal, has
a swing), i.e. may turn a losing coalition into a winning coalition, and vice versa. It only
includes in its framework the set of players, their voting weights, and the decision-making
rule and serves to measure the distribution of a priori or ex ante voting power without
having any recourse to a state space or to other factors present in a particular voting
environment. The Banzhaf can be derived as a cooperative game value or, alternatively,
interpreted as a probability of some pivotal position (see Straffin (1977), Straffin (1988)).
In its probabilistic version it is based on two assumptions (Felsenthal & Machover 1998,
p. 37): (1) voters cast their votes independently of all other members of a voting body
and (2) each voter is equally likely to vote ’yes’ or ’no’ on randomly chosen proposals.

The Strategic Power Index (SPI) employs, in contrast to the Banzhaf and other
commonly used power indices, the analytical tools of non-cooperative game theory. It
integrates actor preferences, the state space (often referred to as a policy or issue space),
as well as the rules of the decision-making process, into the analysis. This index, which

2



has been developed in several papers1, uses the expected or average distance between
players’ ideal points and the equilibrium outcome in policy games in its power calculus.
The smaller the expected distance, the more power is attributed to a player compared
to a ’neutral’ or dummy player who does not have any decision-making rights in the
game.2

Felsenthal and Machover derived their interesting and, given the rather distinctive
analytics characterizing the Banzhaf and the Strategic Power Index, surprising result for
state spaces that they called ’perfectly symmetric’. However, Felsenthal and Machover
did not address the problem of state space generated correlation. In this paper we
discuss the problem of the interplay of the geometry of the state space and voting power
from a much more fundamental and broader perspective.

First of all, with the concept of a perfectly balanced state space we deliver a precise
base for the description of the properties of a state space: to this end, consider a spatial
voting game and three random variables defined on the state space, representing a
proposal, the status quo and the ideal point of a voter. The state space is perfectly
balanced if, with probability 1, the status quo and the proposal are such that the
probability of a random ideal point being closer to the proposal equals that of being
closer to the status quo. We develop a measure for the imbalance of the state space and
show that the higher the overall imbalance the higher the correlation. We exemplify the
above results by looking at a few specific state spaces: one-dimensional state spaces (a
compact set and the whole line of real numbers) and the two-dimensional state spaces
represented by the vertices, edges, and area of a rectangle and the line and area of a
circle.

Secondly, we define probability-based measures for success, luck, and decisiveness as
well as a measure for the average distance between players’ ideal points and the outcome
of the vote. Success means that a player’s vote coincides with the outcome of a voting
procedure – acceptance or rejection, irrespective of whether his/her vote was crucial for
it or not; a player is lucky if he/she is successful without being decisive, with decisiveness
defined as obtaining the result one voted for and being pivotal (crucial) for the outcome.
We show that, in the absence of correlation, these measures which are often referred to
in the context of the measurement of power, only depend on the number of times the
players are decisive. Only the average distance and the reduction thereof depend on the
state space. All probability-based variables do not change when one perfectly balanced
state space is replaced by another perfectly balanced state space.

Under positive correlation matters are much more complex: all probability- and
distance-based measures then depend on the imbalance of the state space. While, for the

1See Steunenberg, Schmidtchen & Koboldt (1996), Steunenberg, Schmidtchen & Koboldt (1997),
Steunenberg, Schmidtchen & Koboldt (1999), Schmidtchen & Steunenberg (2002), Schmidtchen &
Steunenberg (2013).

2The SPI belongs to the class of spatial voting indices which are calculated on the base of a state
space and voters’ preferences, the status quo and proposals defined as points in the state space. All
spatial voting power indices besides the SPI focus on coalitions and the decisiveness of players for
the formation of winning coalitions (Rae 1969, Owen & Shapley 1989, Passarelli & Barr 2007, Barr
& Passarelli 2009, Godfrey, Grofman & Feld 2011, Benati & Vittucci Marzetti 2013). Felsenthal and
Machover were not the first connecting the Banzhaf with a spatial power index. Dubey & Shapley
(1979) showed that there exists an affine-linear relation between the Rae-index (Rae (1969)) and the
Banzhaf. However, this only holds true if all voting configurations are assumed being equally probable
(see Dubey & Shapley (1979)).
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special case of uncorrelated votes, there is an affine relation between the probabilities
of being successful and being decisive, for positive correlation these probabilities do
no longer go hand in hand. Therefore, success then is not a function of a player’s
decisiveness only, but it also depends on situations where the player is dispensable or
insufficient for getting a proposal accepted.

In a much-cited paper entitled ’Is it Better to be Powerful or Lucky?’, Brian Barry
presented the following formula: ’success = luck + decisiveness’ (Barry (1980, p. 338)).
In the literature, this formula has been interpreted only in probability terms. We show
that it also holds true when the three terms are reformulated as distances in the state
space, indicating voters’ (dis-)utility.

Normalizing decisiveness, excess success, i.e. the amount by which the success prob-
ability of a player exceeds that of the dummy player, and the reduction of average
distance delivers three power measures (where the reduction of average distance gives
the SPI). Interestingly, normalized excess success and the SPI share an important prop-
erty of (normalized) decisiveness: they only depend on those situations where a player
is pivotal. We therefore call them normalized measures of decisiveness.

Using specially designed state spaces, we discuss the effect of increasing correlation
on the above mentioned variables. Typically, success and luck are increasing in correla-
tion while decisiveness decreases when correlation rises. With respect to the normalized
measures of decisiveness which are sensitive to changes in correlation, we study their
behavior in relation to three correlation-insensitive power measures: the Banzhaf, the
Shapley-Shubik, and a newly developed index named ’extreme correlation power in-
dex’ (ECPI). All normalized measures of decisiveness agree with the Banzhaf in case
of zero correlation, i.e. for perfectly balanced state spaces. When correlation is close
to unity, they are close to the ECPI, and when correlation is positive but moderate,
they sometimes are well approximated by the Shapley-Shubik index. This is not sur-
prising since it is known in the literature that the Shapley-Shubik index can be derived
under specific probabilistic assumptions inducing correlation, corresponding to Cauchy
distributed random variables in our state space setting.

Finally, we derive some comparative statics results regarding voting rules. In the
absence of correlation, increasing the number of situations in which a player is pivotal
is the only way for a player to be better off, both in terms of success and decisiveness.
In the presence of positive correlation, this is no longer true. For instance, by changing
the voting rules, players may trade decisiveness for being more successful: although
losing decisiveness, a player can gain in terms of success due to the change of voting rule
significantly increasing the probability of being lucky. Another new aspect coming with
positive correlation is that it is possible that, by changing the voting rule, the number of
constellations decreases where a certain player is decisive, while this player’s probability
of being decisive increases! This surprising result is due to the fact that under positive
correlation, constellations are no longer equiprobable: with increasing correlation, it
becomes more and more likely to encounter outcomes of the vote with a vast majority
of the players voting either for or against the proposal. In other words, it becomes less
and less likely that voters split into two almost equally large groups, and therefore it is
less important to be decisive in these situations and more important to be decisive in
situations of very unbalanced voting.

Moreover, under positive correlation, powerless players will be successful more than
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50% of the time, a kind of positive externality in terms of success that players with
power produce to the benefit of powerless voters. This externality is largest when the
powerful voters decide according to the simple majority rule so that it is this rule that
leaves powerless players best off.

A final point is worth to be mentioned: power indices, such as the Banzhaf and other
traditional measures, taking the independence of voters as a necessary and sufficient
condition for zero-correlation, can deliver unbiased power scores only if state spaces are
perfectly balanced.3 Unless one decides to neglect the state space issue entirely or claims
that state spaces are mainly perfectly balanced, power measures are needed that deliver
unbiased power scores for uncorrelated voting due to perfectly balanced state spaces as
well as for correlated voting caused by imbalanced state spaces.4

The paper is organized as follows: Section 2 outlines the basics of our state space
set-up and describes the relation between the votes’ correlation and the geometry of
the state space. After providing definitions and formulas for success, decisiveness, luck
and power in Section 3, we deal in Section 4 with the influence of the geometry of the
state space on these measures. Section 5 discusses the effect of increasing correlation
on success, luck, decisiveness, and power while Section 6 is concerned with comparative
statics. Section 7 concludes, additional tables as well as proofs can be found in the
appendix.

2 The geometry of the state space

2.1 The set-up

We consider a voting body of n players/voters, {1, . . . , n}, to which we add a dummy
player 0 which has no influence on the voting body’s decisions5: we denote by

N := {0, . . . , n}

the set of all players, including the dummy player. The actual voters form collective
decisions by voting in favor of a given proposal, p, or for staying with the status quo, q:
formally, every voter i decides on whether he votes in favor of the proposal, ai = 1, or
against it, ai = 0. The decisions of the voting body are described by a function v which
assigns to every subset M := {i ∈ N : ai = 1} ⊆ N of supporters of the proposal either
the value 1 (the proposal is accepted) or the value 0 (the status quo is maintained).
v represents the rules underlying the voting decision, e.g. the simple majority rule or
situations that require unanimity for the proposal to be accepted. We assume that the
voting rule v has the following properties:

• v(∅) = 0, i.e. if no one votes in favor of the proposal, then the proposal is dismissed,

3Kaniovski (2008a) identifies a substantial bias in the Banzhaf measure if votes are neither equiprob-
able nor independent. Kaniovski & Das (2012) show, running simulations, that the Banzhaf as well
as the Shapley-Shubik measure of power tend to overestimate voting power when votes are positively
correlated.

4As for the postulate to base power calculations on more flexible and more empirically informed
distributions of votes see also Kaniovski & Das (2012), Laruelle & Valenciano (2005), Kaniovski (2008b),
Kaniovski & Leech (2009).

5See below.

5



• v(N) = 1, i.e. in case of an unanimous vote for the proposal, it is successful,

• if M1 ⊆ M2, then v(M1) ≤ v(M2), i.e. adding supporters of the proposal cannot
turn an initially successful proposal into an unsuccessful one.6

As stated above, player 0 is a dummy player, i.e. player 0’s voting has no influence on
whether the proposal p is successful or the status quo q is maintained, formally:

∀M ⊆ N : v(M \ {0}) = v(M) = v(M ∪ {0}),

i.e. for all possible sets M of supporters of the proposal, the body’s decision v is unaf-
fected by player 0’s decision to vote in favor of or against the proposal.

The players’ (including the dummy’s) preferences are described by ideal points
x0, . . . , xn which are elements of a state space7 X such that player i strictly prefers
the proposal p over the status quo if its distance to player i’s ideal point xi is smaller
than that of the status quo. More formally, we assume that player i will vote in favor
of the proposal, ai = 1, if the proposal is closer to the ideal point than the status quo:

∀ i = 0, . . . , n : d(p, xi) < d(q, xi) ⇒ ai = 1.

Accordingly, we have

∀ i = 0, . . . , n : d(p, xi) > d(q, xi) ⇒ ai = 0.

In case of a tie, we assume that players toss a coin:

∀ i = 0, . . . , n : d(p, xi) = d(q, xi) ⇒ ai = 0, ai = 1 each with probability one half8.

We call a player i successful if i’s vote coincides with the voting body’s decision:

ai = v({j ∈ N : aj = 1}),

we call voter i decisive if the body’s vote crucially hinges on i’s vote:

v({j ∈ N \ {i} : aj = 1}) = 0 < 1 = v({j ∈ N \ {i} : aj = 1} ∪ {i}),

and we call player i lucky if i is successful without being decisive. These notions are
intimately linked to the following quantities which will prove very useful later on:

∀ i = 0, . . . , n : Dispi := {M ⊆ N \ {i} : v(M) = 1},

the set of all situations in which player i is dispensable for the proposal to be accepted,

∀ i = 0, . . . , n : Insi := {M ⊆ N \ {i} : 0 = v(M ∪ {i})},
6Formally, v is a simple monotonic game. Simple monotonic games constitute a very large class of

voting games which in particular contains all weighted majority games.
7Formally, (X, d) is a metric space. Usually, the state space X will be some subset of the k-

dimensional space Rk, while d is the Euclidean distance.
8Other assumptions about the behavior of players in case of a tie are possible. For many state spaces

(esp. non-discrete ones), results would not change at all, for others, the results of this paper would have
to be slightly modified.
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the set of all situations in which player i is insufficient for the proposal to be accepted,
and

∀ i = 0, . . . , n : Pivi := {M ⊆ N \ {i} : 0 = v(M) < v(M ∪ {i}) = 1},

the set of all situations in which player i’s decision is pivotal for the proposal to be
passed or not.9 Obviously, player i is successful if and only if one of the following three
cases occurs:

1. player i votes in favor of the proposal and the other players vote such that ’Dispi
occurs’, i.e. such that the subset of voters different from i and supporting the
proposal is an element of Dispi,

2. player i votes against the proposal and the other players vote such that Insi occurs,

3. the other players vote such that Pivi occurs resulting in player i being pivotal and
therefore successful, regardless of player i’s voting decision.

In the first two of the above cases, i.e. when Insi or Dispi occurs, player i is successful
without being decisive, i.e. player i is lucky. In the third case, i.e. when Pivi occurs,
player i is decisive.

While Dispi, Insi, and Pivi refer to N , i.e. to all players including the dummy player,
their variants

D̃ispi := {M ⊆ {1, . . . , n} \ {i} : v(M) = 1},

Ĩnsi := {M ⊆ {1, . . . , n} \ {i} : 0 = v(M ∪ {i})},

P̃ivi := {M ⊆ {1, . . . , n} \ {i} : 0 = v(M) < v(M ∪ {i}) = 1}

for i = 1, . . . , n give the corresponding notions when the dummy is ignored.
We now come to the central building block of our approach: we assume that the

ideal points of all players as well as the status quo and the proposal are realizations of
random variables with the following properties:

1. the random ideal points X0, . . . , Xn of all players are i.i.d. random variables10, i.e.
they are stochastically independent and identically distributed random variables
whose distribution we denoty by µ,

2. the pair (Q,P ) of (random) status quo and proposal is stochastically independent
of X0, . . . , Xn, i.e. the players’ ideal points are independent of both status quo and
proposal,

3. to avoid trivial cases where status quo and proposal coincide, we assume that
(Q,P ) takes values in

X2
6= := {(q, p) : q, p ∈ X, q 6= p},

the set of all pairs of status quo q and proposal p which do not coincide,

9Notice that Piv0 is always empty, as the dummy player is never pivotal. Similarly, in terms of
cooperative game theory and ignoring the dummy player 0, Disp0 is the set of all winning coalitions of
the game v while Ins0 gives all its losing coalitions.

10We will denote random variables by capital letters and their realizations by the corresponding
lower-case letters.
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4. the pair (Q,P ) is distributed according to µ× µ conditional on X2
6=,

ν(·) := (µ× µ)(·|X2
6=),

i.e. status quo and proposal come from the same distribution µ as the ideal points,
with the additional condition that they must not coincide.

By taking the ideal points as well as the status quo and the proposal to be voted upon
as random, we take an ex ante approach: instead of analyzing a certain fixed scenario
of these quantities, we will be taking expectations of different quantities such as the
players’ probabilities to be successful, to be decisive, or to be lucky.

We denote by

A0(Q,P,X0, . . . , Xn), . . . , An(Q,P,X0, . . . , Xn)

the random variables that describe the actions of players 0, . . . , n, i.e. the actions that
players 0, . . . , n choose given status Quo Q, proposal P , and ideal points X0, . . . , Xn,
while

A := A(Q,P,X0, . . . , Xn) := v ({i ∈ N : Ai(Q,P,X0, . . . , Xn) = 1})

denotes the random variable that describes the vote’s result: it takes the value 1 if there
are enough supporters for the proposal to be accepted, and 0 otherwise.

From the definition of A0, . . . , An, it is obvious that, for every player i, her ac-
tion Ai(Q,P,X0, . . . , Xn) does not depend on Xj for j 6= i, as Ai(Q,P,X0, . . . , Xn) is
determined completely by d(Xi, P ) and d(Xi, Q), reflecting that the players decide in-
dependent of each other whether they want to support the proposal or not. To highlight
this, we will from now on write Ai(Q,P,Xi) instead of Ai(Q,P,X0, . . . , Xn).

The above setup can be interpreted as a two-stage setup as in Leech (1990):

1. during the first stage, the status quo, q, and the proposal to be decided upon,
p, are determined according to the probability measure ν. After these have been
determined,

π(q, p) := µ({x : d(p, x) < d(q, x)}) +
1

2
µ({x : d(p, x) = d(q, x)})

is for each player the probability of her random ideal point being such that she
acts in favor of the proposal, i.e. π(q, p) is the probability of Ai(Q,P,Xi) = 1
conditional on Q = q and P = p,

2. thus, in the second stage, i.e. conditional on status quo, q, and proposal, p, the
random variables A0(q, p,X0), . . ., An(q, p,Xn) are independent Bernoulli variables
with probability π(q, p) each,

3. from the definition, it is obvious that π(q, p), the probability that a player accepts
the proposal, and π(p, q), the probability that a player acts against the proposal,
sum up to unity: π(q, p) + π(p, q) = 1 for all q, p. As (Q,P ) has the same dis-
tribution as (P,Q), this entails that overall, player i chooses to act in favor of
the proposal (Ai(Q,P,Xi) = 1) and against the proposal (Ai(Q,P,Xi) = 0) with
probability one half each.
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4. as status quo Q and proposal P are random variables, so is Π := π(Q,P ): it is the
random variable that determines the conditional probability of a player voting in
favor of the proposal. Due to the previously stated facts, the expectation of Π is
E(Π) = 1

2
.

Notice that one must be very careful when using the word ’independent’ for char-
acterizing voters’ behavior. The reason is that there are at least three possibilities of
what can be meant by ’independent voters’:

1. the first meaning concerns the variables A0(Q,P,X0), . . ., An(Q,P,Xn): one might
speak of independent voters if these random variables are stochastically indepen-
dent.

2. the second meaning also concerns the above random variables, but conditional
on Q = q and P = p: one may call the voters independent if, conditional on
proposal and status quo being determined, their voting decisions are stochastically
independent.

3. the third meaning is the one we already alluded to above: every voter is either
unaware of other voters’ preferences or does not take these into account if they
are known.

Whenever we speak of independent voters, we refer to the last two interpretations of
independence which are always fulfilled for our setup. In contrast, whenever talking
about correlated voting, this is to be understood as the unconditional correlation of
Ai(Q,P,Xi) and Aj(Q,P,Xj) being different from zero. These meanings of independent
voters and correlated voting make the following counter-intuitive statement possible:

The geometry of the state space can explain why independent voters’ votes are
correlated.

2.2 The relation between the votes’ correlation and the geom-
etry of the state space

The following theorem relates the correlation of the votes to the properties of the random
variable Π = π(Q,P ).

Theorem 1. For all players i 6= j, we have

Cov(Ai(Q,P,Xi), Aj(Q,P,Xj)) =

∫
X2
6=

π(q, p)2ν(d(q, p))− 1

4
= Var(Π) ≥ 0,

Corr(Ai(Q,P,Xi), Aj(Q,P,Xj)) = 4

∫
X2
6=

π(q, p)2ν(d(q, p))− 1 = 4 Var(Π) ≥ 0.

Proof. See appendix B.1.
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From Theorem 1, we see that the correlation between two players’ votes can never
be negative. We also find that the votes will be uncorrelated if and only if the variance
of Π equals 0. As the latter is only the case if Π is (almost surely) constant, votes
are uncorrelated if and only if π(q, p) equals one half for (ν-almost) all (q, p) ∈ X2

6=.
Furthermore, the votes’ correlation will be higher the more Π fluctuates around its
mean of 1

2
.

In order to characterize the condition for the votes being uncorrelated, we introduce
the notion of perfect balancedness of the state space.

Definition 1 (Perfectly balanced state space). The state space X or, more exactly, the
distribution µ on the state space X, is called perfectly balanced if, for ν-every pair (q, p)
of status quo q and proposal p:

µ({x : d(p, x) < d(q, x)}) = µ({x : d(q, x) < d(p, x)}),

i.e. with probability 1 the status quo q and the proposal p are such that the probability of
a random ideal point being closer to the given proposal p equals that of being closer to
the given status quo q.

Using the definition of π(q, p) and the fact that π(q, p) + π(p, q) = 1, it is very easy
to see that the state space is perfectly balanced if and only if π(q, p) = 1

2
for almost all

(q, p). This immediately delivers the following two corollaries of the preceding results:

Corollary 1 (Perfect balance is equivalent to zero correlation). The state space is
perfectly balanced if and only if the votes

A0(Q,P,X0), . . . , An(Q,P,Xn)

are mutually uncorrelated.

Corollary 2 (Imperfect balance is equivalent to positive correlation). The state space
is not perfectly balanced if and only if the votes

A0(Q,P,X0), . . . , An(Q,P,Xn)

are mutually positively correlated.

To measure the amount of imbalance, we introduce the notions of imbalance between
status quo q and proposal p,

ξ(q, p) := (π(q, p)− π(p, q))2 = (2π(q, p)− 1)2 = 4

(
π(q, p)− 1

2

)2

,

and overall imbalance,

ξ :=

∫
X2
6=

ξ(q, p) ν(d(q, p)) = 4

∫
X2
6=

(
π(q, p)− 1

2

)2

ν(d(q, p)) = 4 Var(Π).

The imbalance ξ(q, p) between q and p is the squared amount by which the probabilities
to vote in favor of and against the proposal differ for given status quo q and proposal
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p. The imbalance Ξ := ξ(Q,P ) is then a random variable whose expected value is the
overall imbalance: E(Ξ) = ξ, where ξ is a measure of the imbalance of the state space as
a whole. As it equals 4 Var(Π), Theorem 1 now reads as follows: the correlation between
players’ votes is equal to the amount of imbalance inherent in the state space which in
turn is the same as the expected imbalance between status quo and proposal.

We will now exemplify the above results by looking at a few apecific state spaces11:

• as a first example, we consider the one-dimensional policy space, i.e. the line
X = [0, 1], with the metric d(q, p) := |q − p| and µ being the Lebesgue measure
on X such that the players’ ideal points are uniformly distributed on [0, 1]. The
probability of preferring a proposal p over a status quo q is then easily seen to be

π(q, p) =
q + p

2
1p<q + (1− q + p

2
)1p>q

for q 6= p ∈ [0, 1], the imbalance between these is given by

ξ(q, p) = (q + p− 1)2,

leading to an overall imbalance of ξ = 1
6

which in turn means that the votes of
two players exhibit a correlation of Corr(Ai(Q,P,Xi), Aj(Q,P,Xj)) = 1

6
.

• as a second example, we consider the whole line of real numbers, X = R, with
µ such that status quo Q, proposal P , and ideal points X0, . . . , Xn are Cauchy
distributed, i.e. µ has, w.r.t. the Lebesgue measure, density f(x) = 1

(x2+1)π
. For

the probability of preferring a proposal p over a status quo q, we get

π(q, p) =
1

2
+

arctan( q+p
2

)

π
(1p<q − 1p>q)

for q 6= p ∈ R, and the imbalance between q and p is given by

ξ(q, p) = 4
arctan2( q+p

2
)

π2
.

We leave it to the reader to verify that Π = π(Q,P ) is uniformly distributed on
[0, 1],12 the corresponding density is plotted in Figure 1 (green line). This entails
that Var(Π) = 1

12
and Corr(Ai(Q,P,Xi), Aj(Q,P,Xj)) = 4 1

12
= 1

3
.

• as a third example, we consider an example of a two-dimensional state space: the
circle.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

11Results for additional examples of state spaces are available upon request.
12This distribution delivers the probabilistic underlying for the Shapley-Shubik index, see e.g. Leech

(1990).
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We discern two versions of it:

1. the circumference X = {(x1, x2) ∈ [−1, 1]2 : x21 + x22 = 1}, together with the
uniform distribution µ on it and the Euclidean distance

d((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2.

In this case, one finds that Π is always equal to 0.5 and we therefore have
a perfectly balanced state space and zero correlation between the voters’
decisions.

2. the circle’s area X = {(x1, x2) ∈ [−1, 1]2 : x21 + x22 ≤ 1}, again with the
uniform distribution for µ and the Euclidean distance. In this case, it is
quite tedious to calculate Π exactly, we therefore used numerical as well as
simulation methods for its calculation. Figure 1 depicts the density of Π: it
takes values close to one half with a higher probability as compared to the
one-dimensional line as a state space, correspondingly the votes’ correlation
in this case is slightly lower than 1

6
, it is 0.123, see Table 1.

• finally, we consider three versions of a rectangle:

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1. the vertices of the rectangle, X = {(0, 0), (2, 0), (2, 1), (0, 1)}, with µ assigning
to each of these points the probability 1

4
. In this case, as for the circle’s

circumference, the state space is perfectly balanced and the correlations of
voters’ decisions are zero.

2. the edges of the rectangle, X = {(x, y) ∈ [0, 2]× [0, 1] : x = 0 ∨ x = 2 ∨ y =
0 ∨ y = 1}, with µ such that the ideal points are uniformly distributed on
the rectangle’s circumference. Due to rather complicated formulas, we again
resorted so simulations: the red line in Figure 1 depicts the density of Π,
showing that Π only takes values between 1

6
and 5

6
with values close to 1

2

being quite probable. As a result, the correlation between voters’ decisions
takes a rather low value of 0.05, see again Table 1.

3. the area of the rectangle, X = [0, 2]× [0, 1], with µ the Lebesgue measure on
[0, 2] × [0, 1] divided by the rectangle’s area, 2. Again, as formulas are too
complicated, we simulated all necessary quantities and present the density
of Π in Figure 1 (black line). Π varies significantly, in particular also taking
values values far from 1

2
with considerable probability. Essentially, the density

in this case lies between the corresponding values for the line and tbe circle’s
area. As a consequence, the votes’ correlation is above that of the circle’s

12
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Figure 1: Density of probability Π of accepting proposal for different policy spaces

State space Correlation
Line 1

6

Cauchy 1
3

Circle, Line 0
Circle, Area 0.123
Rectangle, Vertices 0
Rectangle, Edges 0.05
Rectangle, Area 0.148

Table 1: Correlations implied by different state spaces

area, but below that of a one-dimensional line: the exact value is 0.148, see
Table 1.

2.3 Centrality

As we have seen in the previous section, correlation of the votes is linked to the geometry
of the state space: the more the latter is imbalanced, the higher the correlation. In
particular, the more the random variable Π = π(Q,P ) varies, the higher the imbalance
and the votes’ correlation. A nice way to visualize the geometry of the space is given
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Figure 2: Centrality π for one-dimensional policy space: line , and two-dimensional
policy space: circle

by the concept of centrality, defined as

π(p) :=

∫
X

π(q, p)µ(·|X \ {p})(dq),

i.e. as the probability that a player equipped with a randomly chosen ideal point will
favor the given proposal p over a randomly chosen status quo. Due to its construction,
π(p) is a measure for p’s centrality: if a very central point p of X is considered as
an alternative to a rather non-central or ’extreme’ q, then players will have a higher
probability of voting for p, π(q, p) > 1

2
, resulting in π(p) > 1

2
for central or ’non-extreme’

points p of X and π(p) < 1
2

for non-central points p.
Notice that we obviously have π(p) ≡ 1

2
in case of a perfectly balanced state space,

i.e. for perfectly balanced state spaces, there are no differences in centrality: all points
x ∈ X are equally extreme.

For imbalanced state spaces however, points have different centrality: while some are
very central (π(p) exceeding one half), others are more or less extreme (π(p)� 1

2
). For

the policy spaces of the previous subsection for instance, one finds π(p) = 5
8
− 3

2
(p− 1

2
)2 for

the line X = [0, 1] (see left part of Figure 2): the points between 1
2
−
√
3
6

and 1
2

+
√
3
6

have
above average centrality, with 1

2
being the most central, and with centrality declining

as points move away from 1
2
. While p = 1

2
has a probability of 62.5% of being preferred

over a randomly chosen status quo by a voter endowed with a random ideal point, this
probability will diminish to only 25% for the less central, more extreme points close to
0 or 1.

For the state space with Cauchy distributed ideal points, we find that centrality is
largest at points close to 0 with values of approximately 68% while the centrality of
points far away from zero becomes ever smaller (see Figure 3).
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Figure 3: Centrality π for Cauchy distributed ideal points

Figure 4: Centrality π for two-dimensional policy space: rectangle

For the circle, we find that centrality is equal to one half for the case of the circle’s
circumference, but varies significantly for the case of a circle’s area (see right part of
Figure 2): while the circle’s midpoint, (0, 0), has a centrality of more than 70%, centrality
declines when moving from the circle’s centre to its margins, taking values below 33%
close to the circle’s boundary.

For the rectangle, we get the following results (see Figure 4): the vertices constitute
a perfectly balanced state space and therefore all have centrality one half (blue points).
For the case of the rectangle’s edges, the points in the middle of the longer edge have
above-average centrality of almost 60% while points close to the vertices are least central
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with a value of about 39%. It is remarkable that all points on the shorter edge have
centrality below one half, even those in the middle of the shorter edges. For the case
of the area, we find the largest variation in centrality: points close to the rectangle’s
center at (1, 1

2
) are those with largest centrality of about 67% while points close to the

vertices are the least central and most extreme points with centrality taking values of
about 24%.

3 Success, decisiveness, luck, and power

3.1 Notions of success, decisiveness, luck, and power

In the following definition, we collect quantities that are of interest when evaluating v
with respect to the players’ success, desiveness, luck, and power.

Definition 2 (Success, decisiveness, luck, power). Given the above setup, we define for
every player i ∈ N :

1. the probability of being successful, i.e. the probability of i’s vote coinciding with the
voting body’s decision:

σ′i := Prob
(
Ai(Q,P,Xi) = A(Q,P,X0, . . . , Xn)

)
,

2. the probability of being decisive, i.e. the probability of i’s vote being pivotal:

δ′i := Prob (v (M−i) 6= v ({i} ∪M−i)) ,

where M−i := {j ∈ N \ {i} : Aj(Q,P,Xj) = 1} denotes the (random) set of voters
different from i that vote in favor of the proposal,

3. the probability of i being lucky, i.e. the probability of being successful without being
pivotal:

λi := σ′i − δ′i,

4. the average distance between player i’s ideal point Xi and the outcome of the vote,
O := A(Q,P,X0, . . . , Xn)P +

(
1− A(Q,P,X0, . . . , Xn)

)
Q:

di := E (d (Xi, O)) ,

5. the excess success, i.e. the amount by which the probability of player i being suc-
cessful exceeds that of the dummy player:

σEi := σ′i − σ′0,

6. the reduction of average distance of player i as compared to the dummy player:

Ψ′i := d0 − di,
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7. normalized decisiveness:

δi :=
δ′i∑

j∈N
δ′j

=
δ′i − δ′0∑

j∈N
(δ′j − δ′0)

, 13

8. normalized excess success:

σi :=
σEi∑

j∈N
σEj

=
σ′i − σ′0∑

j∈N
(σ′j − σ′0)

,

9. normalized reduction of average distance:

Ψi :=
Ψ′i∑

j∈N
Ψ′j

=
d0 − di∑

j∈N
(d0 − dj)

.

As powerless players, e.g. the dummy, may have significantly positive values of suc-
cess14, σ′ is not a measure of power, but of success. In contrast, δ′ measures power, not
success: δ′0 = 0, i.e. dummy players are never decisive although they are occasionally
successful: sometimes, they are lucky. Luck is measured by λ which is the difference
between success and decisiveness15: λ = σ′ − δ′.

Another possibility of measuring success is given by d: it measures the expected
distance between the outcome of the vote and the players’ ideal points. As this distance
can be understood as an expected disutility, we can say that player i is more successful
than player j if player i’s expected disutility, di, is smaller than that of player j, dj.

In fact, one may write all the measures discussed above as expected utilities: by
defining

uσi (. . .) := 1Ai(Q,P,Xi)=A(Q,P,X0,...,Xn)
,

player i’s probability of being successful, σ′i, is an expected utility: σ′i = E(uσi (. . .));
similarly, defining

uδi (. . .) := 1v(M−i)6=v({i}∪M−i),

player i’s probability of being decisive, δ′i, is also an expected utility: δ′i = E(uδi (. . .)).
It is possible to transform a measure of success into a measure of decisiveness: by

relating the measure of success of player i (e.g., σ′i or di) to the corresponding measure
for the dummy player (σ′0 or d0), one can construct quantities which take the value
zero for powerless or dummy players: excess success σEi = σ′i − σ′0 and reduction of
average distance Ψ′i = d0− di. As we will see below, these are actually also measures of
decisiveness as for their calculation the only relevant situations are those where player
i is pivotal, i.e. the sets Pivi.

Altogether, we therefore have three measures of decisiveness: decisiveness, δ′, excess
success, σE, and reduction of average distance, Ψ′. Each of these can be normalized to
get a power index, i.e. they can be normalized such that the sum over all players equals

13As player 0 is a dummy player, player 0 is never decisive: δ′0 = 0.
14In fact, one may prove that σ′0 ≥ 1

2 in our setting.
15See (Barry 1980).
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unity. Thereby, we get three power indices: normalized decisiveness, δ, normalized excess
success, σ, and normalized reduction of average distance, Ψ. Among these, normalized
decisiveness δ′ is by far the most prominent one in the literature. Notice, however, that
Ψ′ is also known under the name ’strategic power index’ which is defined in much more
general contexts of non-cooperative game theory.

3.2 Formulas for success, decisiveness, luck, and power

The following theorem is the central result of this section:

Theorem 2. We have the following formulas for each i ∈ N :16

1. for the probability of being successful:

σ′i =
∑

M∈Dispi

∫
X2
6=

π(q, p)|M |+1(1− π(q, p))n−|M |ν(d(q, p))

+
∑

M∈Insi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n+1−|M |ν(d(q, p))

+
∑

M∈Pivi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−|M |ν(d(q, p))

2. for the probability of being decisive:

δ′i =
∑

M∈Pivi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−|M |ν(d(q, p))

3. for the probability of being lucky:

λi =
∑

M∈Dispi

∫
X2
6=

π(q, p)|M |+1(1− π(q, p))n−|M |ν(d(q, p))

+
∑

M∈Insi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n+1−|M |ν(d(q, p))

16All results can be written down in two ways: first, including the dummy player, i.e. using N =
{0, . . . , n} and Dispi, Insi, Pivi, and, second, excluding the dummy player, i.e. using {1, . . . , n} and

D̃ispi, Ĩnsi, P̃ivi. Notice that n in formulas of the first kind corresponds to n − 1 in formulas of the
second kind. In the text, we decided to always present the more intuitive version.
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4. for the average distance between outcome and ideal point:

di =
∑

M∈Pivi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−|M |
∫
X

min(d(q, xi), d(p, xi))µ(dxi)ν(d(q, p))

+
∑

M∈Dispi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−|M |
∫
X

d(p, xi)µ(dxi)ν(d(q, p))

+
∑

M∈Insi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−|M |
∫
X

d(q, xi)µ(dxi)ν(d(q, p))

5. for the excess success:

σEi = σ′i − σ′0 = 2
∑

M∈P̃ivi

∫
X2
6=

π(q, p)|M |+1(1− π(q, p))n−|M |ν(d(q, p))

6. for the reduction of average distance:

Ψ′i =
∑

M∈P̃ivi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−1−|M |z(q, p)ν(d(q, p))

with the function

z(q, p) :=

∫
X

(π(q, p)d(p, x) + (1− π(q, p))d(q, x)−min(d(q, x), d(p, x)))µ(dx)

7. for normalized decisiveness:

δi =

∑
M∈P̃ivi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−1−|M |ν(d(q, p))∑
j∈{1,...,n}

∑
M∈P̃ivj

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−1−|M |ν(d(q, p))

8. for normalized excess success:

σi =

∑
M∈P̃ivi

∫
X2
6=

π(q, p)|M |+1(1− π(q, p))n−|M |ν(d(q, p))∑
j∈{1,...,n}

∑
M∈P̃ivj

∫
X2
6=

π(q, p)|M |+1(1− π(q, p))n−|M |)ν(d(q, p))

9. for normalized reduction of average distance:

Ψi =

∑
M∈P̃ivi

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−1−|M |z(q, p)ν(d(q, p))∑
j∈{1,...,n}

∑
M∈P̃ivj

∫
X2
6=

π(q, p)|M |(1− π(q, p))n−1−|M |z(q, p)ν(d(q, p))

19



Instead of a formal proof, we will explain how the formulas of the preceding theorem
are obtained, thereby also shedding some light on their interpretation.

For the probability of player i being successful, σ′i, we have a formula consisting of
three parts:

1. a sum over all the situations where player i is dispensable with the corresponding
probability of i as well as all the |M | members of M voting ’Yes.’ while all the
n− |M | players not belonging to M vote ’No.’,

2. a sum over all the situations where player i is insufficient with the corresponding
probability of i as well all the n − |M | players not belonging to M voting ’No.’
while all the |M | members of M vote ’Yes.’,

3. a sum over all the situations where player i’s vote is pivotal with the corresponding
probability of all the n − |M | players not belonging to M voting ’No.’ while all
the |M | members of M vote ’Yes.’.17

While the third sum obviously gives the probability of player i being decisive, the first
two sums taken together give the probability of player i being lucky.

The formula for the expected distance between outcome and ideal point of player
i also consists of three sums: when i is pivotal, i.e. when the other players vote such
that Pivi occurs, then player i will be able to choose between the status quo, q, and
the proposal, p, and will of course vote such that the smaller of the distances d(q, xi)
and d(p, xi) obtains. If, however, Dispi occurs, then the proposal will be accepted and
player i will be facing the distance d(p, xi). Finally, if Insi occurs and the proposal will
be dismissed, the corresponding distance will equal d(q, xi).

For the excess success, the situations where player i is dispensable or insufficient
play no role at all: if player i lacks power to change the result of the vote, then so
does the dummy player such that the corresponding parts in σ′i and σ′0 cancel out
each other. Therefore, we have to consider only those situations in which player i
is decisive and therefore also successful. In those situations, the dummy player will
be unsuccessful exactly if players i and the dummy player cast different votes. The
conditional probability of their votes being different is 2π(q, p)(1 − π(q, p)) which, to
give the formula of the theorem, is multiplied by π(q, p)|M |(1 − π(q, p))n−1−|M |, the
probability that the corresponding situation occurs.

With regard to the reduction of average distance, the situations where player i is not
decisive play no role at all, for exactly the same reason as above: when player i is not
decisive, there is no difference to a powerless dummy player. We therefore only have to
consider the sets P̃ivi where all other players (excluding the dummy player) vote such
that player i is decisive. In such a situation, the function

z(q, p) =

∫
X

(π(q, p)d(p, x) + (1− π(q, p))d(q, x)−min(d(q, x), d(p, x)))µ(dx).

describes the expected advantage in terms of distance of player i over a dummy player:
the result of the vote will with conditional probability π(q, p) (the conditional proba-
bility of player i voting ’Yes.’) be equal to the proposal p, and with conditional prob-
ability 1 − π(q, p) (the conditional probability of player i voting ’No.’) will it be equal

17Player i is always successful when Pivi occurs, regardless of how player i actually votes.
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to the status quo q. Therefore, conditional on the situation, the expected distance
between the dummy player’s ideal point and the outcome is

∫
X

π(q, p)d(p, x0) + (1 −

π(q, p))d(q, x0)µ(dx0) while the expected distance between the outcome and the ideal
point of player i is

∫
X

min(d(q, xi), d(p, xi))µ(dxi) because i always votes such that the

smaller of the distances d(q, xi), d(p, xi) prevails. In the end, the reduction of aver-
age distance is given by multiplying z(q, p) by the probability of M occurring, i.e. by
π(q, p)|M |(1− π(q, p))n−1−|M |, and integrating over status quo and proposal, (q, p).

An important aspect of these formulas already alluded to above is that these quan-
tities only depend on what happens in the situations where the players are decisive.
Keeping in mind that the dummy’s measure of success is a proxy for luck, we might
phrase this aspect as the following generalization of Barry’s formula ’decisiveness =
success - luck’:18

’Relating a measure of success to the corresponding measure of a dummy player
delivers a measure of decisiveness.’

In the literature, Barry’s formula has been interpreted only in probability terms. Our
approach allows reformulating it in terms of distances in the state space as well. Two
options exist, both indicating player i’s excess success with respect to the dummy player:

di = d0 −Ψ′i

−di = −d0 + Ψ′i

Player i’s average distance reflects the influence of being lucky and decisive, an
influence captured on the one hand by the purely luck-driven average distance of the
dummy player, and, on the other hand, a term indicating the difference in both players’
average success which is the result of i’s decisiveness.

Recall that expected distance between player i’s ideal point and the outcome of the
vote can be interpreted as expected disutility, which gives another interpretation of the
first of the above mentioned formulas: player i’s expected disutility equals the dummy
player’s purely luck-driven expected disutility corrected by the utility gain player i can
achieve by being decisive now and then. The second formula expresses the same logic,
however, in terms of utility.

4 The influence of correlated voting on success, de-

cisiveness, luck, and power

4.1 Formulas in the absence of correlation

We now discuss the special case of a perfectly balanced state space, i.e. the case of zero
correlation.

18For an extensive formal discussion of the relationship between success and decisiveness see Laruelle
& Valenciano (2005), Laruelle, Martinez & Valenciano (2006), Laruelle & Valenciano (2008).
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Corollary 3 (Formulas for perfectly balanced state spaces). If the state space is perfectly
balanced, we have the following formulas:19

1. σ′i = 1
2

+
(
1
2

)n+1 |Pivi |,

2. δ′i =
(
1
2

)n |Pivi |,

3. λi = 1
2
−
(
1
2

)n+1 |Pivi |,

4. di = E (d (Q,Xi))−
(
1
2

)n |Pivi |
(
E (d (Q,Xi))− E (min (d (Q,Xi) , d (P,Xi)))

)
= E (d (P,Xi))−

(
1
2

)n |Pivi |
(
E (d (P,Xi))− E (min (d (Q,Xi) , d (P,Xi)))

)
,

5. σEi =
(
1
2

)n |P̃ivi|

6. Ψ′i =
(
1
2

)n−1 |P̃ivi|
(
E (d (Q,Xi))− E (min (d (Q,Xi) , d (P,Xi)))

)
=
(
1
2

)n−1 |P̃ivi|
(
E (d (P,Xi))− E (min (d (Q,Xi) , d (P,Xi)))

)
,

7. δi = σi = Ψi =
|P̃ivi|∑

j∈{1,...,n}

|Pivj |
=: βi.

A first striking observation concerning the formulas of the preceding corollary is that
all the above formulas are independent of Insi and Dispi, they only depend on |Pivi |,
the number of times the players are decisive. In particular, all measures of success,
decisiveness, or power for player i are increasing in the number of times player i is
decisive. Therefore, from a constitutional point of view, in order to optimize any one of
these quantities, players have the incentive to change the voting rules such that there
are more constellations in which they are decisive.

The formula for luck, λi, is somewhat peculiar: it is the only one that is decreasing
in |Pivi |. This is no surprise since increasing |Pivi | leads to i being decisive more often,
and when being decisive a player is not lucky, simply because he does not need luck to
get the desired outcome of the vote.

Another striking result of the preceding corollary is that all the power indices, i.e.
all the normalized measures of decisiveness, take the same value δi = σi = Ψi =

|P̃ivi|∑
j∈{1,...,n}

|Pivj | = βi which is just the well-known Banzhaf measure of power. In other

words: in the absence of correlation, all the normalized measures of decisiveness are just
Banzhaf indices in disguise. In particular, Corollary 3 is a generalization of a result of
Felsenthal & Machover (2001) which states that the Banzhaf index equals the strategic
power index when the state space is perfectly symmetric.

Additionally, in the absence of correlation, only the average distance and the reduc-
tion thereof depend on the state space. All other quantities do not change at all when
one perfectly balanced state space is replaced by another perfectly balanced one. This
can for instance be verified from Tables 2 and 11 or Tables 5 and 14 which display the

19The proof follows easily from the preceding theorem, occasionally using that the disjoint union of
Dispi, Pivi, and Insi is simply the set of all subsets of N \ {i} which contains 2n elements, and that Q
and P are identically distributed.
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measures for the the circumference of a circle and the area of a rectangle as state spaces
and for two voting situations of six players with voting weights 2, 2, 21, 28, 31, and 31,
and a quorum of 59.5 or 86.25 votes necessary for a proposal to be accepted.20

4.2 Formulas for positively correlated votes

In order to discuss and interpret the changes that come along with (positive) correlation,
the following corollary which is essentially a reformulation of Theorem 2 will prove useful.

Corollary 4 (Formulas for imbalanced state spaces).

1. For non-negative integers j, k, l, we have for

wj,k,l := E
(
π(Q,P )j (1− π(Q,P ))k z(Q,P )l

)
:

wj,k,l = E

(
z(Q,P )l

2j+k+1

((
1−

√
ξ(Q,P )

)j (
1 +

√
ξ(Q,P )

)k
+
(

1−
√
ξ(Q,P )

)k (
1 +

√
ξ(Q,P )

)j))
,

2. σ′i =
∑

M∈Dispi

w|M |+1,n−|M |,0 +
∑

M∈Insi
w|M |,n+1−|M |,0 +

∑
M∈Pivi

w|M |,n−|M |,0

3. δ′i =
∑

M∈Pivi
w|M |,n−|M |,0

4. λi =
∑

M∈Dispi

w|M |+1,n−|M |,0 +
∑

M∈Insi
w|M |,n+1−|M |,0

5. σEi = 2
∑

M∈P̃ivi

w|M |+1,n−|M |,0

6. Ψi =
∑

M∈P̃ivi

w|M |,n−1−|M |,1

7. δi =

∑
M∈P̃ivi

w|M |,n−1−|M |,0∑
j∈{1,...,n}

∑
M∈P̃ivj

w|M |,n−1−|M |,0

8. σi =

∑
M∈P̃ivi

w|M |+1,n−|M |,0∑
j∈{1,...,n}

∑
M∈P̃ivj

w|M |+1,n−|M |,0

20The pattern of voting rights represents the assignment of voting rights to the 6 districts of Nassau
County, NY, which reflected proportionally the respective population (with a majority of 58 votes
needed to carry a motion). John F. Banzhaf III. argued in a law suit that this assignment of the 115
voting rights is seriously flawed, since three districts (North Hampstead, Oyster Bay and Glen Clove),
with, respectively, 21, 2 and 2 votes, are actually powerless.
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9. Ψi =

∑
M∈P̃ivi

w|M |,n−1−|M |,1∑
j∈{1,...,n}

∑
M∈P̃ivj

w|M |,n−1−|M |,1

Proof. For the proof of the first assertion, we refer to appendix B.2. The remaining
assertions are easy consequences of the first and Theorem 2.

From the preceding corollary, we learn that all probability-based measures like suc-
cess, decisiveness, and luck, only depend on the state space through the distribution
of certain moments of ξ(Q,P ) through w·,·,0. For the distance-based measures, we find
that they additionally depend on z(Q,P ), the random variable which describes the ad-
vantage in terms of reduction of average distance a player has over the dummy player
in situations where the player is decisive.

Compared to the case of zero correlation, luck as well as measures of success do now
additionally depend on the situations in which a player is insufficient or dispensable. In
other words: it is possible to have two different voting situations with identical Pivi, i.e.
identical sets of situations where player i is decisive, but different measures of success
due to differing sets of situations where the player is dispensable or insufficient. For
instance, comparing Tables 4 and 7 reveals that the dummy player (which is never
decisive) is better off in terms of luck, success, and average distance under the voting
rule of the first table and would therefore certainly prefer that voting rule to the one
underlying the second table.21

Measures of decisiveness as well as the power indices, however, depend only on those
situations where a player is pivotal. As w|M |,n−|M |,0, w|M |+1,n−1−|M |,0, and w|M |,n−1−|M |,1
typically do not differ much, the normalized measures of decisiveness usually deliver
values very close to each other. This can also by verified by inspecting the tables in the
appendix.

5 Special state spaces: from zero to extreme corre-

lation

As we have seen above, the votes will be uncorrelated if and only if the state space is
perfectly balanced. In this case, all probability-based measures do not depend on the
particular perfectly balanced state space, only the distance-based do so. The case of
no correlation is of course the set-up underlying the development of the Banzhaf index
of power which we found to agree in this situation with all normalized measures of
decisiveness, δ, σ, and Ψ.

Another interesting special case is the state space X = R with Cauchy distributed
random variables for status quo, proposal, and ideal points: as already stated earlier,
in this case, the random variable π(Q,P ) describing the probability of a random voter
preferring P over Q is uniformly distributed on [0, 1]. As is shown for instance in
(Leech 1990), this is exactly the setting in which the Shapley-Shubik index of power

21We will discuss this issue in some detail and generality in the next subsection.
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delivers the players’ probabilities of being decisive: as can be seen from Tables 20 - 22,22

we have in this case δ′ = δ = φ, with the Shapley-Shubik index of power being defined
as

φi :=
∑

M∈P̃ivi

|M |! (n− 1− |M |)!
n!

Notice, in particular, that all players’ probabilities of being decisive sum up to unity
which is not the case for other state spaces23. However, this does not mean that for every
outcome of the vote, there is always exactly one player which is decisive. It only means
that, on average, there is one player which is decisive: there are typically situations
where several players are decisive, but also situations where no player is decisive.

We now consider an example that depends on a parameter in such a way that it is
possible to study the effect of rising correlation. To that end, we define the state space
X = {0, 1} as the set containing only the two points 0 and 1. For the measure µ on
X, we assume that µ({1}) = 1

2
(1 +

√
ρ), with a parameter ρ that can vary between

0 and 1. It is then easy to see that ξ(0, 1) = ξ(1, 0) = ξ = ρ such that the votes’
correlation will also be equal to ρ so that we can interpret the parameter ρ as governing
the correlation of this particular state space. Notice that, for this particular state space,
the average distance di between a player’s ideal point and the outcome of the vote will
be unity if player i is not successful and zero if the player succeeds. Therefore, for this
particular example, we have di = 1−σ′i. We will now study how the measures of success,
decisiveness, luck, and power answer to changes in correlation, ρ.

Proposition 1. For the state space X = {0, 1} with µ({1}) = 1
2
(1 +

√
ρ) for ρ ∈ [0, 1],

we have:

1. wj,k,0 =
(1− ρ)min(j,k)

2j+k+1

((
1−√ρ

)|j−k|
+
(
1 +
√
ρ
)|j−k|)

for all j, k, l,

2. if min(j, k) > 0, then wj,k,0 converges to zero for ρ approaching unity

3. for j, k 6= 0, wj,0,0 and w0,k,0 converge to one half for ρ approaching unity

4. for ρ approaching unity,

(a) σ′i ≈ 1, di ≈ 0 for all i ∈ N ,

(b) δ′i ≈


0 : ∅ ∈ Insi ∧N \ {i} ∈ Dispi
1
2

: ∅ ∈ Insi ∧N \ {i} ∈ Pivi
1
2

: ∅ ∈ Pivi ∧N \ {i} ∈ Dispi

1 : ∅ ∈ Pivi ∧N \ {i} ∈ Pivi

(c) λi ≈


1 : ∅ ∈ Insi ∧N \ {i} ∈ Dispi
1
2

: ∅ ∈ Insi ∧N \ {i} ∈ Pivi
1
2

: ∅ ∈ Pivi ∧N \ {i} ∈ Dispi

0 : ∅ ∈ Pivi ∧N \ {i} ∈ Pivi

22Notice that for Cauchy distributed random variables, the first moment, i.e. the expected value,
does not exist. Therefore all distance-based measures are not defined in this case.

23Inspecting the tables given in the appendix shows that the sum of the players’ probabilities of being
decisive may fall below or exceed unity, depending on the state space and the voting rules.
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(d) with the notations

m := min

({
|M | : M ∈

n⋃
i=1

P̃ivi

}
∪

{
n− 1− |M | : M ∈

n⋃
i=1

P̃ivi

})

and αi := |{M ∈ P̃ivi : |M | = m ∨ |M | = n− 1−m}|, we have:

σi, δi,Ψi ≈
αi
n∑
j=1

αj

=: ζi.

Instead of a formal proof, we will discuss how to obtain and use the results of the
preceding proposition. As for the first result, it is an immediate consequence of the
corresponding formula given in Corollary 4, using that ξ(., .) ≡ ρ. The second and third
assertion are easy consequences of the first, showing that, asymptotically for extreme
correlation, the probability of votes being split converges to zero while the probability of
unanimous ’Yes.’ votes and that of unanimous ’No.’ votes each will approach one half.
This in particular implies that all players including the dummy player will asymptotically
always be successful as almost always a unanimous voting result will occur: everyone
gets exactly what he wants, simply because all voters want the same. Correspondingly,
due to d = 1− σ′, the average distance between ideal points and outcome converges to
zero.

With respect to decisiveness and luck, matters are a little bit more complicated:
depending on ∅ ∈ Pivi or ∅ ∈ Insi (player i alone can or cannot enforce the proposal
by voting for it) and N \ {i} ∈ Pivi or N \ {i} ∈ Dispi (player i alone can or cannot
stop the proposal by voting against it), player i’s success in case of unanimous votes
is either due to decisiveness or due to luck. All in all, we have to distinguish four
different cases: first of all, for normal players, i.e. for players who can neither enforce
the proposal (∅ ∈ Insi or, equivalently, v({i} = 0) nor the status quo (N \ {i} ∈ Dispi
or, equivalently, v(N \ {i}) = 1), decisiveness converges to zero while luck converges to
unity. Again, this is plausible as asymptotically all other players cast the same vote and
normal players are not decisive but lucky when all others vote unanimously. If a player
has a right to veto (v(N \ {i}) = 0) but no positive omnipotence (v({i} = 0), then two
scenarios happen asymptotically each with probability one half: either all players vote
’Yes.’ in which case player i is decisive because of not using the right to veto, or all
players vote ’No.’ in which case player i is not decisive but lucky. Therefore, a veto
player lacking positive omnipotence will in case of extreme correlation be decisive and
lucky with probability 50% each. An analogous result holds for a player with positive
omnipotence but lacking the right to veto against the proposal. Finally, for a dictator
with both positive and negative omnipotence, decisiveness is always 100%, regardless of
the votes’ correlation. On the other hand, a dictator is never lucky.

Finally, let us explain and discuss the limit of the power indices given in the last
assertion of the proposition: for all normalized measures of power, Corollary 4 shows
that they are ratios of sums of wj,k,l, with j, k, l depending on the measure at hand.
The first assertion of the preceding proposition shows that these are of magnitude (1−
ρ)min(j,k) which is, for ρ close to unity, the smaller the larger min(j, k) is. Asymptotically,
therefore, only those sets M will play a role for which the exponent of 1− ρ is minimal:
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this minimal exponent is denoted by m, it gives the minimum taken over the number
of voters that do not agree with the majority of voters in situations where at least
one player is decisive. The corresponding limit index which we call extreme correlation
power index (ECPI) takes only those situations into account where the number of voters
voting against the majority is equal to m as these situations are asymptotically the only
relevant situations. One may therefore view the extreme correlation power index ζ as the
antipode of the Banzhaf index: while the Banzhaf index treats all situations as equally
important, the limit index ζ completely ignores many situations in which players are
decisive, taking into account only those where the number of voters disagreeing with the
majority’s vote is minimal.

To study the effect of increasing correlation, we present in the appendix two sets of
tables (Tables 23 - 40) for two different voting rules and different values of ρ, increasing
from the case of zero correlation, ρ = 0, to very high correlation, ρ ≈ 0.979: for the first
set of tables, 6 players have voting weights (2, 2, 21, 28, 31, 31) and need 87 votes, i.e. an
acceptance rate of 75%, for the proposal to pass, while for the second set, the voting
weights are (1, 1, 2, 3, 3, 10) with 11 votes necessary for the proposal to be accepted. The
first set (Tables 23-31) shows the effects that one would expect by combining the results
of Corollary 3 and Proposition 1:

• success is an increasing function of correlation, starting at σ′i = 1
2

+
(
1
2

)n+1 |Pivi |
for zero correlation and increasing to σ′i ≈ 1 for maximal correlation,

• for all players, decisiveness decreases from δ′i =
(
1
2

)n |Pivi | in the absence of
correlation to zero for extreme positive correlation (all players are normal players,
lacking the power to enforce or prohibit the proposal),

• for all players, luck increases from λi = 1
2
−
(
1
2

)n+1 |Pivi | in case of zero correlation
to unity for correlation converging to unity,

• all normalized measures of power start at the Banzhaf value β for zero correlation,
move into the direction of the Shapley-Shubik value φ when correlation increases
moderately, and, for large correlation, pass the values of the Shapley-Shubik index
and converge eventually to the limit index ζ.

However, as the second set of examples (Tables 32-40) shows, the behavior of the mea-
sures of success, decisiveness, and power may also be more complicated:

• for player 6, success first decreases with increasing correlation, from 98.44% in the
absence of correlation to 96.65% when ρ ≈ 0.456. Only then success increases with
correlation to its limit value of 100%,

• for players 1-5, decisiveness first increases with correlation, from 3.12% in the
absence of correlation to 4.17% for ρ = 1

3
, later on decreasing to its limit of zero,

• the normalized measures of power start by taking the Banzhaf value for ρ = 0
and then moving towards the Shapley-Shubik value which they take for ρ = 3

7
−

2
35

√
30 ≈ 0.116, further rising correlation sees the weaker players 1-5 gaining and

player 6 losing power until ρ reaches the value 11
5
− 2

5

√
19 ≈ 0.456 after which point

the powerful player 6 gains power at the expense of the weaker players 1-5. At
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ρ = 3
7

+ 2
35

√
30 ≈ 0.742, the normalized measures again agree with the Shapley-

Shubik index, and only for very large correlations exceeding this value do they
finally approach their limit value determined by the limit index ζ.

We would like to emphasize that the preceding example in particular shows that the nor-
malized measures may take the same value for different correlations as ρ = 3

7
− 2

35

√
30 ≈

0.116 and ρ = 3
7

+ 2
35

√
30 ≈ 0.742 both deliver the Shapley-Shubik values. On the other

hand, the example also shows that the value of the votes’ correlation alone does not con-
tain enough information to determine the measures of success, decisiveness, and power:
for both Table 22 and Table 35, the correlation of the votes is 1

3
, but with completely

different values of all measures of success, decisiveness, luck, and power.

To finish this section, we present the general result for correlation converging to
unity:24

Proposition 2. For ξ(Q,P ) approaching unity, we have:

1. wj,k,l ≈
E
(
(z(Q,P )l(1− ξ(Q,P ))min(j,k)

)
22min(j,k)+1j 6=k

for all j, k, l,

2. σ′i ≈ 1 for all i ∈ N ,

3. δ′i ≈


0 : ∅ ∈ Insi ∧N \ {i} ∈ Dispi
1
2

: ∅ ∈ Insi ∧N \ {i} ∈ Pivi
1
2

: ∅ ∈ Pivi ∧N \ {i} ∈ Dispi

1 : ∅ ∈ Pivi ∧N \ {i} ∈ Pivi

4. λi ≈


1 : ∅ ∈ Insi ∧N \ {i} ∈ Dispi
1
2

: ∅ ∈ Insi ∧N \ {i} ∈ Pivi
1
2

: ∅ ∈ Pivi ∧N \ {i} ∈ Dispi

0 : ∅ ∈ Pivi ∧N \ {i} ∈ Pivi

5. di ≈ E(min(d(Q,Xi), d(P,Xi)))

6. σi, δi,Ψi ≈ ζi.

Essentially, Proposition 2 is just the generalization of Proposition 1 to the general
case, its only new content is the result for the average distance between outcome and
players’ ideal points: corresponding to the asymptotic probability of 100% of being suc-
cessful, players can profit from extreme correlation by bringing their average distance
down to the expected distance of the minimum of the distances of their ideal point to the
status quo and the proposal, respectively: they are almost always able to get what they
wish for, i.e. the outcome that minimizes the distance to the ideal point. All in all, we
have discussed two groups of power indices consisting of three members each: first, the
correlation-insensitive indices, Banzhaf, Shapley-Shubik, and extreme correlation power

24Formally, the random variable ξ(Q,P ) has to converge to unity in a suitable sense. However, we
will omit these technicalities and just state the result without a formal proof.
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index (ECPI), and, second, the correlation-sensitive indizes, normalized decisiveness,
normalized excess success, and normalized reduction of average distance (SPI), which
take the state space’s imbalance into account. The correlation-insensitive power indices
correspond to specific situations: the Banzhaf corresponds to zero correlation, the ECPI
is developed for extremely high correlation close to unity, and the Shapley-Shubik corre-
sponds to a moderate correlation of 1

3
produced by uniformly distributed Π = π(Q,P ).

Within the second group of indices, values typically do not differ by much, so choosing a
particular one is mostly a matter of taste. For the case of zero correlation, they all agree
with the Banzhaf, for extremely high correlation they will all be close to the ECPI. For
moderate correlation, they might be approximated by the Shapley-Shubik index, but as
Tables 35-38 show, there is no guarantee that this approximation is actually adequate.

6 Comparative statics with respect to the voting

rules

In the absence of correlation, due to all measures of success and decisiveness depending
on |Pivi | only, player i’s only way of improving her situation is given by increasing the
set Pivi, i.e. by a change of rules such that there are more constellations where player i
is decisive. When such a change is set into force, all measures of decisiveness and success
will simultaneously improve for player i.

In the presence of positive correlation, however, success and decisiveness need no
longer go hand in hand: for instance, for the two voting rules underlying Tables 7
and 10, we find that players 5 and 6 are much less decisive in the situation of Table
10, but they are more often successful than in the situation of Table 7. In some way,
therefore, by moving from the voting role corresponding to Table 7 to that of Table 10,
players 5 and 6 have sacrificed decisiveness for the sake of gaining success. To study the
reasons underlying this phenomenon, we first state a quite technical proposition whose
interesting implications we will discuss below.

Proposition 3.

1. for all j, k, l, we have: wj,k,l = wk,j,l

2. for all m, ñ, l with m+ 1 ≤ ñ, we have:

(a) wm+1,ñ−m,l + wm,ñ+1−m,l = wm,ñ−m,l,

(b) wm,ñ−m,l ≥ wm+1,ñ−(m+1),l if and only if m ≤ ñ−1
2

3. for the dual game v∗ defined by v∗(M) := 1− v(N \M) and the corresponding sets
Ins∗i , Disp∗i , and Piv∗i of situations where player i is insufficient, dispensable, and
decisive, resp., with respect to the dual game, we have:

(a) M ∈ Ins∗i if and only if N \ (M ∪ {i}) ∈ Dispi,

(b) M ∈ Disp∗i if and only if N \ (M ∪ {i}) ∈ Insi,

(c) M ∈ Piv∗i if and only if N \ (M ∪ {i}) ∈ Pivi,
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4. when v is replaced with v∗, all measures of luck, decisiveness, success, and power
stay the same.

Proof. See appendix B.3.

Using 2.(a) of the proposition, we might rewrite the formula for success25,

σ′i =
∑

M∈Dispi

w|M |+1,n−|M |,0 +
∑

M∈Insi

w|M |,n+1−|M |,0 +
∑

M∈Pivi

w|M |,n−|M |,0

in the following way:

σ′i =
∑

M⊆N\{i}

(
w|M |+1,n−|M |,01M∈Dispi + w|M |,n+1−|M |,01M∈Insi + w|M |,n−|M |,01M∈Pivi

)
=

∑
M⊆N\{i}

(
w|M |+1,n−|M |,01M∈Dispi ∪Pivi + w|M |,n+1−|M |,01M∈Insi ∪Pivi

)
This formula is highly useful, it can be exploited in several ways: for instance, in terms
of the contribution to player i’s success, we find using the proposition that

• for fixed M , it is best if M ∈ Pivi as the contribution of M then is the sum of
those where M ∈ Insi and M ∈ Dispi,

• for fixed M , M ∈ Insi delivers a larger contribution than M ∈ Dispi if and only if
|M | ≤ n

2
,

• if M ∈ Pivi, the size of M is important: the closer |M | to n
2
, the smaller the

contribution of M to success as well as decisiveness,

• if M ∈ Dispi, the size of M is important: the closer |M | to n−1
2

, the smaller the
contribution of M to success,

• if M ∈ Insi, the size of M is important: the closer |M | to n+1
2

, the smaller the
contribution of M to success.

One consequence of the above is the following: for the never decisive dummy player
(Piv0 = ∅), it is best if all small M , i.e. those with |M | ≤ n

2
, belong to Ins0, i.e. lead

to the proposal being dismissed, and all large M , i.e. those with |M | ≥ n
2
, belong to

Disp0, i.e. lead to the proposal being accepted. As |M | is the number of votes in favor
of the proposal, this rule maximizing the dummy’s success is of course nothing else than
the rule of simple majority per capita. For the example of Table 10, the dummy player
thereby achieves a success rate of more than 62%, nota bene without any actual influence
on the outcome of the vote. Phrased differently, the voting rules in combination with the
positive correlation lead to the actual voters producing some kind of positive externality
to the benefit of powerless voters.

Another consequence of the above is that it is more important to be decisive in
situations with either very few or a lot of supporters of the proposal, while it is less
important to be decisive in situations where the voters are split into two almost equally

25We restrict this discussion to the measures σ′ and δ′. Similar assertions hold for the distance-based
measures.
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large groups of supporters and opponents of the proposal. This is also completely in
line with intuition: the latter case of two equally large groups is less likely to occur
due to the positive correlation of the votes. Note that this fact may have consequences
completely different from the case of zero correlation where it is only important to be
decisive in as many situations as possible: it may now happen that under a new voting
rule, the number |Pivi | of situations with player i being decisive increases, although
at the same time the probability of the player being decisive decreases: we leave it to
the reader to verify that by changing the voting rule of Table 7 to that of Table 10,
|Piv5 | = |Piv6 | increases from 18 to 20, although players 5 and 6’s probability of being
decisive decreases by almost 10%.

Let us now suppose that the players engage in negotiations about a new constitution
concerning the voting rules. Then it is very well possible that there is room for all
players to improve their probability of being successful by cleverly combining the ideas
discussed above: some players may profit from being decisive in more situations, some
may trade M ∈ Pivi with |M | ≈ n

2
for another M ∈ Pivi with |M | either small or large,

and others may benefit from the new rules because some of the situations M ⊆ N \ {i}
move from Insi to Dispi or vice versa. Again, Tables 7 and 10 provide such an example:
under the simple majority per capita, all players have a higher probability of being
successful than under the voting rule of Table 7, although players 5 and 6 are now much
less decisive: this is compensated by these players now being more lucky than before.

Similarly, as the tables in the appendix reveal, all players are better of in terms
of success if the qualified majority rule requiring 75% of the weights for a proposal
(γ = 86.25) is replaced by the less stringent rule necessitating only 60 votes (γ = 59.5).
From the point of maximizing the probability of being successful, the latter voting rule
therefore is Pareto superior to the former.

7 Conclusion

In this paper, we analyze a source of correlation between the votes of independent voters
that has not been discussed in the literature so far: the geometry of the state space. We
develop a new concept for the description of a state space, labeled perfect balancedness,
and show that perfect balancedness of a state space is a necessary and sufficient condition
for non-correlation of the votes of independent voters. The votes of independent voters
are necessarily positively correlated if the state space is not perfectly balanced. Our
analysis also sheds a new light on Barry’s formula of ’success = luck + power’, in terms
of probabilities, distances, and utilities. We show that one can transform a measure of
success into one for decisiveness by relating it to a dummy player’s value for success.
Moreover, we develop formulas for calculating all these quantities for arbitrary state
spaces, showing that the distribution of imbalance across a state space is decisive for
these measures.

By normalizing decisiveness, excess success, and the reduction of average distances,
we consider three power measures whose values are usually quite close to each other:
normalized excess success is an entirely new measure while normalized reduction of
average distances is known as the Strategic Power Index. When correlation converges
to unity, all these measures approach the new extreme correlation power index (ECPI)
which is an antipode to the Banzhaf. The Banzhaf, Shapley-Shubik, and ECPI index
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are all correlation-insensitive measures of power which in particular situations might be
good approximations to the three correlation-sensitive power indices. Furthermore, all
correlation-sensitive indices agree with the Banzhaf for zero correlation, therefore they
may be seen as generalizations of the Banzhaf index.

Finally we provide some comparative statics results w.r.t. to voting rules, showing
that for positive correlation, the number of situations where some player is decisive is
not enough to determine this player’s probability of being decisive: situations with the
voting body split into two almost equally large groups are less important, those with
almost unanimous votes are more important. Moreover, powerless players are best off
when the other players decide using the simple majority rule.

Quite a number of questions arise immediately:

• The analysis of this paper is based on the simplifying assumption of identical
probability distributions for status quo, proposals, and ideal points. What will be
the consequences if these probability distributions are different?

• A very important question is how the different sources of correlation of votes
known from the literature interact with the correlation due to the geometry of the
state space. How would our results change if we take into account other sources
of correlation?

• We did not distinguish between winning (positive) power and rejecting (negative)
power. It would be interesting to define indices for winning and rejecting power
based on the notion of excess success and to show how they react to the geometry
of the state space.

• We analyzed a very simple game: the voting game has been one-shot, proposals
to be voted upon ’fell from heaven’, there has been no agenda setter. Moreover,
it has been a dominant strategy for all voters to vote for that alternative which is
preferred according to the distance to a voter’s ideal point. Relaxing these assump-
tions and analyzing more complex games with the possibility of strategic voting
would enable us to deliver a much more complete picture of state space generated
correlations of votes and voting power. This will have important ramifications for
the choice of voting rules.

We leave these interesting issues for future research.
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A Additional Tables

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 50.00 46.88 46.88 46.88 28.12 25.00 25.00

succ. σ′ 50.00 53.12 53.12 53.12 71.88 75.00 75.00

avg. dist. d 1.273 1.252 1.252 1.252 1.121 1.099 1.099
dec. δ′ 0 6.25 6.25 6.25 43.75 50.00 50.00

exc. succ. σE 0 3.12 3.12 3.12 21.88 25.00 25.00
red. avg. dist. Ψ′ 0 0.022 0.022 0.022 0.152 0.174 0.174

norm. dec. δ 0 3.85 3.85 3.85 26.92 30.77 30.77
norm. exc. succ. σ 0 3.85 3.85 3.85 26.92 30.77 30.77

SPI Ψ 0 3.85 3.85 3.85 26.92 30.77 30.77
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 2: Circle, Line, Corr=0, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 58.59 55.92 55.92 55.92 38.60 35.28 35.28

succ. σ′ 58.59 60.89 60.89 60.89 75.41 78.09 78.09

avg. dist. d 0.863 0.852 0.852 0.852 0.784 0.772 0.772
dec. δ′ 0 4.97 4.97 4.97 36.82 42.81 42.81

exc. succ. σE 0 2.30 2.30 2.30 16.82 19.49 19.49
red. avg. dist. Ψ′ 0 0.011 0.011 0.011 0.079 0.091 0.091

norm. dec. δ 0 3.62 3.62 3.62 26.81 31.17 31.17
norm. exc. succ. σ 0 3.66 3.66 3.66 26.83 31.09 31.09

SPI Ψ 0 3.70 3.70 3.70 26.85 31.03 31.03
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 3: Circle, Area, Corr=0.123, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 61.26 58.76 58.76 58.76 42.08 38.75 38.75

succ. σ′ 61.26 63.34 63.34 63.34 76.66 79.17 79.17

avg. dist. d 0.310 0.304 0.304 0.304 0.267 0.261 0.261
dec. δ′ 0 4.58 4.58 4.58 34.58 40.42 40.42

exc. succ. σE 0 2.08 2.08 2.08 15.39 17.90 17.90
red. avg. dist. Ψ′ 0 0.006 0.006 0.006 0.042 0.049 0.049

norm. dec. δ 0 3.55 3.55 3.55 26.77 31.29 31.29
norm. exc. succ. σ 0 3.61 3.61 3.61 26.81 31.17 31.17

SPI Ψ 0 3.68 3.68 3.68 26.84 31.07 31.07
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 4: Line, Corr=1
6
, w = (2, 2, 21, 28, 31, 31), γ = 59.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 50.00 48.44 48.44 48.44 39.06 35.94 35.94

succ. σ′ 50.00 51.56 51.56 51.56 60.94 64.06 64.06

avg. dist. d 1.273 1.262 1.262 1.262 1.197 1.175 1.175
dec. δ′ 0 3.12 3.12 3.12 21.88 28.12 28.12

exc. succ. σE 0 1.56 1.56 1.56 10.94 14.06 14.06
red. avg. dist. Ψ′ 0 0.011 0.011 0.011 0.076 0.098 0.098

norm. dec. δ 0 3.57 3.57 3.57 25.00 32.14 32.14
norm. exc. succ. σ 0 3.57 3.57 3.57 25.00 32.14 32.14

SPI Ψ 0 3.57 3.57 3.57 25.00 32.14 32.14
Banzhaf β 0 3.57 3.57 3.57 25.00 32.14 32.14

Shapley-Shubik φ 0 3.33 3.33 3.33 16.67 36.67 36.67
ECPI ζ 0 0.00 0.00 0.00 0.00 50.00 50.00

Table 5: Circle, Line, Corr=0, w = (2, 2, 21, 28, 31, 31), γ = 86.25

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 55.80 53.81 53.81 53.81 44.51 37.71 37.71

succ. σ′ 55.80 57.32 57.32 57.32 64.96 69.30 69.30

avg. dist. d 0.878 0.871 0.871 0.871 0.836 0.818 0.818
dec. δ′ 0 3.51 3.51 3.51 20.45 31.59 31.59

exc. succ. σE 0 1.52 1.52 1.52 9.16 13.50 13.50
red. avg. dist. Ψ′ 0 0.007 0.007 0.007 0.042 0.060 0.060

norm. dec. δ 0 3.72 3.72 3.72 21.72 33.55 33.55
norm. exc. succ. σ 0 3.74 3.74 3.74 22.49 33.15 33.15

SPI Ψ 0 3.73 3.73 3.73 23.00 32.91 32.91
Banzhaf β 0 3.57 3.57 3.57 25.00 32.14 32.14

Shapley-Shubik φ 0 3.33 3.33 3.33 16.67 36.67 36.67
ECPI ζ 0 0.00 0.00 0.00 0.00 50.00 50.00

Table 6: Circle, Area, Corr=0.123, w = (2, 2, 21, 28, 31, 31), γ = 86.25

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 57.90 55.83 55.83 55.83 46.67 38.33 38.33

succ. σ′ 57.90 59.37 59.37 59.37 66.46 71.04 71.04

avg. dist. d 0.318 0.314 0.314 0.314 0.295 0.285 0.285
dec. δ′ 0 3.54 3.54 3.54 19.79 32.71 32.71

exc. succ. σE 0 1.47 1.47 1.47 8.56 13.14 13.14
red. avg. dist. Ψ′ 0 0.004 0.004 0.004 0.023 0.033 0.033

norm. dec. δ 0 3.70 3.70 3.70 20.65 34.13 34.13
norm. exc. succ. σ 0 3.74 3.74 3.74 21.81 33.48 33.48

SPI Ψ 0 3.74 3.74 3.74 22.72 33.03 33.03
Banzhaf β 0 3.57 3.57 3.57 25.00 32.14 32.14

Shapley-Shubik φ 0 3.33 3.33 3.33 16.67 36.67 36.67
ECPI ζ 0 0.00 0.00 0.00 0.00 50.00 50.00

Table 7: Line, Corr=1
6
, w = (2, 2, 21, 28, 31, 31), γ = 86.25
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 50.00 34.38 34.38 34.38 34.38 34.38 34.38

succ. σ′ 50.00 65.62 65.62 65.62 65.62 65.62 65.62

avg. dist. d 1.273 1.165 1.165 1.165 1.165 1.165 1.165
dec. δ′ 0 31.25 31.25 31.25 31.25 31.25 31.25

exc. succ. σE 0 15.62 15.62 15.62 15.62 15.62 15.62
red. avg. dist. Ψ′ 0 0.109 0.109 0.109 0.109 0.109 0.109

norm. dec. δ 0 16.67 16.67 16.67 16.67 16.67 16.67
norm. exc. succ. σ 0 16.67 16.67 16.67 16.67 16.67 16.67

SPI Ψ 0 16.67 16.67 16.67 16.67 16.67 16.67
Banzhaf β 0 16.67 16.67 16.67 16.67 16.67 16.67

Shapley-Shubik φ 0 16.67 16.67 16.67 16.67 16.67 16.67
ECPI ζ 0 16.67 16.67 16.67 16.67 16.67 16.67

Table 8: Circle, Line, Corr=0, w = (1, 1, 1, 1, 1, 1), γ = 3.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 59.34 45.99 45.99 45.99 45.99 45.99 45.99

succ. σ′ 59.34 70.82 70.82 70.82 70.82 70.82 70.82

avg. dist. d 0.859 0.805 0.805 0.805 0.805 0.805 0.805
dec. δ′ 0 24.84 24.84 24.84 24.84 24.84 24.84

exc. succ. σE 0 11.48 11.48 11.48 11.48 11.48 11.48
red. avg. dist. Ψ′ 0 0.054 0.054 0.054 0.054 0.054 0.054

norm. dec. δ 0 16.67 16.67 16.67 16.67 16.67 16.67
norm. exc. succ. σ 0 16.67 16.67 16.67 16.67 16.67 16.67

SPI Ψ 0 16.67 16.67 16.67 16.67 16.67 16.67
Banzhaf β 0 16.67 16.67 16.67 16.67 16.67 16.67

Shapley-Shubik φ 0 16.67 16.67 16.67 16.67 16.67 16.67
ECPI ζ 0 16.67 16.67 16.67 16.67 16.67 16.67

Table 9: Circle, Area, Corr=0.123, w = (1, 1, 1, 1, 1, 1), γ = 3.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 62.13 49.59 49.59 49.59 49.59 49.59 49.59

succ. σ′ 62.13 72.51 72.51 72.51 72.51 72.51 72.51

avg. dist. d 0.307 0.278 0.278 0.278 0.278 0.278 0.278
dec. δ′ 0 22.92 22.92 22.92 22.92 22.92 22.92

exc. succ. σE 0 10.38 10.38 10.38 10.38 10.38 10.38
red. avg. dist. Ψ′ 0 0.029 0.029 0.029 0.029 0.029 0.029

norm. dec. δ 0 16.67 16.67 16.67 16.67 16.67 16.67
norm. exc. succ. σ 0 16.67 16.67 16.67 16.67 16.67 16.67

SPI Ψ 0 16.67 16.67 16.67 16.67 16.67 16.67
Banzhaf β 0 16.67 16.67 16.67 16.67 16.67 16.67

Shapley-Shubik φ 0 16.67 16.67 16.67 16.67 16.67 16.67
ECPI ζ 0 16.67 16.67 16.67 16.67 16.67 16.67

Table 10: Line, Corr=1
6
, w = (1, 1, 1, 1, 1, 1), γ = 3.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 50.00 46.88 46.88 46.88 28.12 25.00 25.00

succ. σ′ 50.00 53.12 53.12 53.12 71.88 75.00 75.00

avg. dist. d 1.309 1.269 1.269 1.269 1.028 0.988 0.988
dec. δ′ 0 6.25 6.25 6.25 43.75 50.00 50.00

exc. succ. σE 0 3.12 3.12 3.12 21.88 25.00 25.00
red. avg. dist. Ψ′ 0 0.040 0.040 0.040 0.281 0.321 0.321

norm. dec. δ 0 3.85 3.85 3.85 26.92 30.77 30.77
norm. exc. succ. σ 0 3.85 3.85 3.85 26.92 30.77 30.77

SPI Ψ 0 3.85 3.85 3.85 26.92 30.77 30.77
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 11: Rectangle, Vertices, Corr=0, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 53.83 50.88 50.88 50.88 32.56 29.30 29.30

succ. σ′ 53.83 56.55 56.55 56.55 73.30 76.25 76.25

avg. dist. d 1.065 1.048 1.048 1.048 0.942 0.924 0.924
dec. δ′ 0 5.66 5.66 5.66 40.74 46.95 46.95

exc. succ. σE 0 2.71 2.71 2.71 19.47 22.42 22.42
red. avg. dist. Ψ′ 0 0.017 0.017 0.017 0.123 0.141 0.141

norm. dec. δ 0 3.74 3.74 3.74 26.87 30.96 30.96
norm. exc. succ. σ 0 3.74 3.74 3.74 26.87 30.95 30.95

SPI Ψ 0 3.77 3.77 3.77 26.89 30.90 30.90
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 12: Rectangle, Edges, Corr=0.05, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 60.13 57.55 57.55 57.55 40.56 37.23 37.23

succ. σ′ 60.13 62.29 62.29 62.29 76.11 78.69 78.69

avg. dist. d 0.758 0.748 0.748 0.748 0.682 0.670 0.670
dec. δ′ 0 4.74 4.74 4.74 35.54 41.46 41.46

exc. succ. σE 0 2.16 2.16 2.16 15.98 18.56 18.56
red. avg. dist. Ψ′ 0 0.010 0.010 0.010 0.076 0.088 0.088

norm. dec. δ 0 3.58 3.58 3.58 26.79 31.24 31.24
norm. exc. succ. σ 0 3.63 3.63 3.63 26.82 31.15 31.15

SPI Ψ 0 3.68 3.68 3.68 26.84 31.07 31.07
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 13: Rectangle, Area, Corr=0.148, w = (2, 2, 21, 28, 31, 31), γ = 59.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 50.00 48.44 48.44 48.44 39.06 35.94 35.94

succ. σ′ 50.00 51.56 51.56 51.56 60.94 64.06 64.06

avg. dist. d 1.309 1.289 1.289 1.289 1.169 1.128 1.128
dec. δ′ 0 3.12 3.12 3.12 21.88 28.12 28.12

exc. succ. σE 0 1.56 1.56 1.56 10.94 14.06 14.06
red. avg. dist. Ψ′ 0 0.020 0.020 0.020 0.141 0.181 0.181

norm. dec. δ 0 3.57 3.57 3.57 25.00 32.14 32.14
norm. exc. succ. σ 0 3.57 3.57 3.57 25.00 32.14 32.14

SPI Ψ 0 3.57 3.57 3.57 25.00 32.14 32.14
Banzhaf β 0 3.57 3.57 3.57 25.00 32.14 32.14

Shapley-Shubik φ 0 3.33 3.33 3.33 16.67 36.67 36.67
ECPI ζ 0 0.00 0.00 0.00 0.00 50.00 50.00

Table 14: Rectangle, Vertices, Corr=0, w = (2, 2, 21, 28, 31, 31), γ = 86.25

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 52.27 50.49 50.49 50.49 41.02 36.65 36.65

succ. σ′ 52.27 53.86 53.86 53.86 62.48 66.28 66.28

avg. dist. d 1.075 1.065 1.065 1.065 1.011 0.989 0.989
dec. δ′ 0 3.38 3.38 3.38 21.46 29.63 29.63

exc. succ. σE 0 1.60 1.60 1.60 10.21 14.01 14.01
red. avg. dist. Ψ′ 0 0.010 0.010 0.010 0.064 0.086 0.086

norm. dec. δ 0 3.72 3.72 3.72 23.62 32.61 32.61
norm. exc. succ. σ 0 3.71 3.71 3.71 23.73 32.57 32.57

SPI Ψ 0 3.68 3.68 3.68 24.08 32.44 32.44
Banzhaf β 0 3.57 3.57 3.57 25.00 32.14 32.14

Shapley-Shubik φ 0 3.33 3.33 3.33 16.67 36.67 36.67
ECPI ζ 0 0.00 0.00 0.00 0.00 50.00 50.00

Table 15: Rectangle, Edges, Corr=0.05, w = (2, 2, 21, 28, 31, 31), γ = 86.25

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 56.96 54.92 54.92 54.92 45.67 38.05 38.05

succ. σ′ 56.96 58.46 58.46 58.46 65.78 70.28 70.28

avg. dist. d 0.774 0.767 0.767 0.767 0.733 0.715 0.715
dec. δ′ 0 3.54 3.54 3.54 20.11 32.23 32.23

exc. succ. σE 0 1.50 1.50 1.50 8.82 13.32 13.32
red. avg. dist. Ψ′ 0 0.007 0.007 0.007 0.041 0.060 0.060

norm. dec. δ 0 3.72 3.72 3.72 21.13 33.86 33.86
norm. exc. succ. σ 0 3.75 3.75 3.75 22.08 33.34 33.34

SPI Ψ 0 3.74 3.74 3.74 22.73 33.03 33.03
Banzhaf β 0 3.57 3.57 3.57 25.00 32.14 32.14

Shapley-Shubik φ 0 3.33 3.33 3.33 16.67 36.67 36.67
ECPI ζ 0 0.00 0.00 0.00 0.00 50.00 50.00

Table 16: Rectangle, Area, Corr=0.148, w = (2, 2, 21, 28, 31, 31), γ = 86.25
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 50.00 48.44 48.44 48.44 48.44 48.44 1.56

succ. σ′ 50.00 51.56 51.56 51.56 51.56 51.56 98.44

avg. dist. d 1.309 1.289 1.289 1.289 1.289 1.289 0.687
dec. δ′ 0 3.12 3.12 3.12 3.12 3.12 96.88

exc. succ. σE 0 1.56 1.56 1.56 1.56 1.56 48.44
red. avg. dist. Ψ′ 0 0.020 0.020 0.020 0.020 0.020 0.622

norm. dec. δ 0 2.78 2.78 2.78 2.78 2.78 86.11
norm. exc. succ. σ 0 2.78 2.78 2.78 2.78 2.78 86.11

SPI Ψ 0 2.78 2.78 2.78 2.78 2.78 86.11
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 17: Rectangle, Vertices, Corr=0, w = (1, 1, 2, 3, 3, 10), γ = 10.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 52.81 51.03 51.03 51.03 51.03 51.03 2.89

succ. σ′ 52.81 54.41 54.41 54.41 54.41 54.41 98.10

avg. dist. d 1.071 1.062 1.062 1.062 1.062 1.062 0.789
dec. δ′ 0 3.38 3.38 3.38 3.38 3.38 95.21

exc. succ. σE 0 1.60 1.60 1.60 1.60 1.60 45.29
red. avg. dist. Ψ′ 0 0.010 0.010 0.010 0.010 0.010 0.282

norm. dec. δ 0 3.01 3.01 3.01 3.01 3.01 84.94
norm. exc. succ. σ 0 2.99 2.99 2.99 2.99 2.99 85.03

SPI Ψ 0 2.94 2.94 2.94 2.94 2.94 85.30
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 18: Rectangle, Edges, Corr=0.05, w = (1, 1, 2, 3, 3, 10), γ = 10.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 58.13 56.09 56.09 56.09 56.09 56.09 6.33

succ. σ′ 58.13 59.63 59.63 59.63 59.63 59.63 97.75

avg. dist. d 0.768 0.762 0.762 0.762 0.762 0.762 0.585
dec. δ′ 0 3.54 3.54 3.54 3.54 3.54 91.42

exc. succ. σE 0 1.50 1.50 1.50 1.50 1.50 39.62
red. avg. dist. Ψ′ 0 0.007 0.007 0.007 0.007 0.007 0.183

norm. dec. δ 0 3.24 3.24 3.24 3.24 3.24 83.78
norm. exc. succ. σ 0 3.18 3.18 3.18 3.18 3.18 84.10

SPI Ψ 0 3.11 3.11 3.11 3.11 3.11 84.44
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 19: Rectangle, Area, Corr=0.148, w = (1, 1, 2, 3, 3, 10), γ = 10.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 70.48 68.57 68.57 68.57 54.76 51.67 51.67

succ. σ′ 70.48 71.90 71.90 71.90 81.43 83.33 83.33

avg. dist. d
dec. δ′ 0 3.33 3.33 3.33 26.67 31.67 31.67

exc. succ. σE 0 1.43 1.43 1.43 10.95 12.86 12.86
red. avg. dist. Ψ′

norm. dec. δ 0 3.33 3.33 3.33 26.67 31.67 31.67
norm. exc. succ. σ 0 3.49 3.49 3.49 26.74 31.40 31.40

SPI Ψ
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 20: Cauchy, Corr=1
3
, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 66.19 64.05 64.05 64.05 55.95 40.71 40.71

succ. σ′ 66.19 67.38 67.38 67.38 72.62 77.38 77.38

avg. dist. d
dec. δ′ 0 3.33 3.33 3.33 16.67 36.67 36.67

exc. succ. σE 0 1.19 1.19 1.19 6.43 11.19 11.19
red. avg. dist. Ψ′

norm. dec. δ 0 3.33 3.33 3.33 16.67 36.67 36.67
norm. exc. succ. σ 0 3.68 3.68 3.68 19.85 34.56 34.56

SPI Ψ
Banzhaf β 0 3.57 3.57 3.57 25.00 32.14 32.14

Shapley-Shubik φ 0 3.33 3.33 3.33 16.67 36.67 36.67
ECPI ζ 0 0.00 0.00 0.00 0.00 50.00 50.00

Table 21: Cauchy, Corr=1
3
, w = (2, 2, 21, 28, 31, 31), γ = 86.25

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 67.86 65.71 65.71 65.71 65.71 65.71 14.29

succ. σ′ 67.86 69.05 69.05 69.05 69.05 69.05 97.62

avg. dist. d
dec. δ′ 0 3.33 3.33 3.33 3.33 3.33 83.33

exc. succ. σE 0 1.19 1.19 1.19 1.19 1.19 29.76
red. avg. dist. Ψ′

norm. dec. δ 0 3.33 3.33 3.33 3.33 3.33 83.33
norm. exc. succ. σ 0 3.33 3.33 3.33 3.33 3.33 83.33

SPI Ψ
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 22: Cauchy, Corr=1
3
, w = (1, 1, 2, 3, 3, 10), γ = 10.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 50.00 46.88 46.88 46.88 28.12 25.00 25.00

succ. σ′ 50.00 53.12 53.12 53.12 71.88 75.00 75.00

avg. dist. d 0.500 0.469 0.469 0.469 0.281 0.250 0.250
dec. δ′ 0 6.25 6.25 6.25 43.75 50.00 50.00

exc. succ. σE 0 3.12 3.12 3.12 21.88 25.00 25.00
red. avg. dist. Ψ′ 0 0.031 0.031 0.031 0.219 0.250 0.250

norm. dec. δ 0 3.85 3.85 3.85 26.92 30.77 30.77
norm. exc. succ. σ 0 3.85 3.85 3.85 26.92 30.77 30.77

SPI Ψ 0 3.85 3.85 3.85 26.92 30.77 30.77
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 23: Two Points, Corr=0, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 52.81 49.80 49.80 49.80 31.29 28.06 28.06

succ. σ′ 52.81 55.62 55.62 55.62 72.87 75.88 75.88

avg. dist. d 0.472 0.444 0.444 0.444 0.271 0.241 0.241
dec. δ′ 0 5.82 5.82 5.82 41.57 47.82 47.82

exc. succ. σE 0 2.81 2.81 2.81 20.06 23.07 23.07
red. avg. dist. Ψ′ 0 0.028 0.028 0.028 0.201 0.231 0.231

norm. dec. δ 0 3.76 3.76 3.76 26.88 30.92 30.92
norm. exc. succ. σ 0 3.76 3.76 3.76 26.88 30.92 30.92

SPI Ψ 0 3.76 3.76 3.76 26.88 30.92 30.92
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 24: Two Points, Corr=1
3
− 2

15

√
5 ≈ 0.035, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 58.90 56.17 56.17 56.17 38.39 34.95 34.95

succ. σ′ 58.90 61.06 61.06 61.06 75.16 77.89 77.89

avg. dist. d 0.411 0.389 0.389 0.389 0.248 0.221 0.221
dec. δ′ 0 4.89 4.89 4.89 36.78 42.94 42.94

exc. succ. σE 0 2.16 2.16 2.16 16.26 18.99 18.99
red. avg. dist. Ψ′ 0 0.022 0.022 0.022 0.163 0.190 0.190

norm. dec. δ 0 3.56 3.56 3.56 26.78 31.27 31.27
norm. exc. succ. σ 0 3.56 3.56 3.56 26.78 31.27 31.27

SPI Ψ 0 3.56 3.56 3.56 26.78 31.27 31.27
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 25: Two Points, Corr=3
7
− 2

35

√
30 ≈ 0.116, w = (2, 2, 21, 28, 31, 31), γ = 59.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 73.15 71.30 71.30 71.30 56.48 52.78 52.78

succ. σ′ 73.15 74.07 74.07 74.07 81.48 83.33 83.33

avg. dist. d 0.269 0.259 0.259 0.259 0.185 0.167 0.167
dec. δ′ 0 2.78 2.78 2.78 25.00 30.56 30.56

exc. succ. σE 0 0.93 0.93 0.93 8.33 10.19 10.19
red. avg. dist. Ψ′ 0 0.009 0.009 0.009 0.083 0.102 0.102

norm. dec. δ 0 2.94 2.94 2.94 26.47 32.35 32.35
norm. exc. succ. σ 0 2.94 2.94 2.94 26.47 32.35 32.35

SPI Ψ 0 2.94 2.94 2.94 26.47 32.35 32.35
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 26: Two Points, Corr=1
3
, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 75.04 73.32 73.32 73.32 59.07 55.37 55.37

succ. σ′ 75.04 75.83 75.83 75.83 82.44 84.16 84.16

avg. dist. d 0.250 0.242 0.242 0.242 0.176 0.158 0.158
dec. δ′ 0 2.51 2.51 2.51 23.37 28.79 28.79

exc. succ. σE 0 0.80 0.80 0.80 7.41 9.12 9.12
red. avg. dist. Ψ′ 0 0.008 0.008 0.008 0.074 0.091 0.091

norm. dec. δ 0 2.84 2.84 2.84 26.42 32.54 32.54
norm. exc. succ. σ 0 2.84 2.84 2.84 26.42 32.54 32.54

SPI Ψ 0 2.84 2.84 2.84 26.42 32.54 32.54
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 27: Two Points, Corr= 2
15

√
105− 1 ≈ 0.366, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 79.87 78.52 78.52 78.52 65.94 62.33 62.33

succ. σ′ 79.87 80.37 80.37 80.37 85.07 86.41 86.41

avg. dist. d 0.201 0.196 0.196 0.196 0.149 0.136 0.136
dec. δ′ 0 1.85 1.85 1.85 19.13 24.08 24.08

exc. succ. σE 0 0.50 0.50 0.50 5.20 6.54 6.54
red. avg. dist. Ψ′ 0 0.005 0.005 0.005 0.052 0.065 0.065

norm. dec. δ 0 2.54 2.54 2.54 26.27 33.06 33.06
norm. exc. succ. σ 0 2.54 2.54 2.54 26.27 33.06 33.06

SPI Ψ 0 2.54 2.54 2.54 26.27 33.06 33.06
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 28: Two Points, Corr=11
5
− 2

5

√
19 ≈ 0.456, w = (2, 2, 21, 28, 31, 31), γ = 59.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 87.93 87.24 87.24 87.24 78.33 75.27 75.27

succ. σ′ 87.93 88.08 88.08 88.08 90.09 90.79 90.79

avg. dist. d 0.121 0.119 0.119 0.119 0.099 0.092 0.092
dec. δ′ 0 0.85 0.85 0.85 11.76 15.52 15.52

exc. succ. σE 0 0.156 0.156 0.156 2.167 2.859 2.859
red. avg. dist. Ψ′ 0 0.002 0.002 0.002 0.022 0.029 0.029

norm. dec. δ 0 1.87 1.87 1.87 25.94 34.22 34.22
norm. exc. succ. σ 0 1.87 1.87 1.87 25.94 34.22 34.22

SPI Ψ 0 1.87 1.87 1.87 25.94 34.22 34.22
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 29: Two Points, Corr=1
3

+ 2
15

√
5 ≈ 0.631, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 92.18 91.82 91.82 91.82 85.46 83.01 83.01

succ. σ′ 92.18 92.23 92.23 92.23 93.18 93.54 93.54

avg. dist. d 0.078 0.078 0.078 0.078 0.068 0.065 0.065
dec. δ′ 0 0.42 0.42 0.42 7.71 10.53 10.53

exc. succ. σE 0 0.054 0.054 0.054 0.997 1.360 1.360
red. avg. dist. Ψ′ 0 0.001 0.001 0.001 0.010 0.014 0.014

norm. dec. δ 0 1.39 1.39 1.39 25.70 35.07 35.07
norm. exc. succ. σ 0 1.39 1.39 1.39 25.70 35.07 35.07

SPI Ψ 0 1.39 1.39 1.39 25.70 35.07 35.07
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 30: Two Points, Corr=3
7

+ 2
35

√
30 ≈ 0.742, w = (2, 2, 21, 28, 31, 31), γ = 59.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 99.46 99.45 99.45 99.45 98.92 98.66 98.66

succ. σ′ 99.46 99.46 99.46 99.46 99.46 99.46 99.46

avg. dist. d 0.005 0.005 0.005 0.005 0.005 0.005 0.005
dec. δ′ 0 0.00 0.00 0.00 0.54 0.81 0.81

exc. succ. σE 0 0.000 0.000 0.000 0.006 0.009 0.009
red. avg. dist. Ψ′ 0 0.000 0.000 0.000 0.000 0.000 0.000

norm. dec. δ 0 0.13 0.13 0.13 25.07 37.27 37.27
norm. exc. succ. σ 0 0.13 0.13 0.13 25.07 37.27 37.27

SPI Ψ 0 0.13 0.13 0.13 25.07 37.27 37.27
Banzhaf β 0 3.85 3.85 3.85 26.92 30.77 30.77

Shapley-Shubik φ 0 3.33 3.33 3.33 26.67 31.67 31.67
ECPI ζ 0 0.00 0.00 0.00 25.00 37.50 37.50

Table 31: Two Points, Corr=10
29

+ 1
145

√
8445 ≈ 0.979, w = (2, 2, 21, 28, 31, 31), γ = 59.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 50.00 48.44 48.44 48.44 48.44 48.44 1.56

succ. σ′ 50.00 51.56 51.56 51.56 51.56 51.56 98.44

avg. dist. d 0.500 0.484 0.484 0.484 0.484 0.484 0.016
dec. δ′ 0 3.12 3.12 3.12 3.12 3.12 96.88

exc. succ. σE 0 1.56 1.56 1.56 1.56 1.56 48.44
red. avg. dist. Ψ′ 0 0.016 0.016 0.016 0.016 0.016 0.484

norm. dec. δ 0 2.78 2.78 2.78 2.78 2.78 86.11
norm. exc. succ. σ 0 2.78 2.78 2.78 2.78 2.78 86.11

SPI Ψ 0 2.78 2.78 2.78 2.78 2.78 86.11
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 32: Two Points, Corr=0, w = (1, 1, 2, 3, 3, 10), γ = 10.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 51.98 50.25 50.25 50.25 50.25 50.25 2.42

succ. σ′ 51.98 53.59 53.59 53.59 53.59 53.59 98.17

avg. dist. d 0.480 0.464 0.464 0.464 0.464 0.464 0.018
dec. δ′ 0 3.33 3.33 3.33 3.33 3.33 95.76

exc. succ. σE 0 1.61 1.61 1.61 1.61 1.61 46.19
red. avg. dist. Ψ′ 0 0.016 0.016 0.016 0.016 0.016 0.462

norm. dec. δ 0 2.97 2.97 2.97 2.97 2.97 85.17
norm. exc. succ. σ 0 2.97 2.97 2.97 2.97 2.97 85.17

SPI Ψ 0 2.97 2.97 2.97 2.97 2.97 85.17
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 33: Two Points, Corr=1
3
− 2

15

√
5 ≈ 0.035, w = (1, 1, 2, 3, 3, 10), γ = 10.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 56.49 54.42 54.42 54.42 54.42 54.42 4.59

succ. σ′ 56.49 58.14 58.14 58.14 58.14 58.14 97.64

avg. dist. d 0.435 0.419 0.419 0.419 0.419 0.419 0.024
dec. δ′ 0 3.72 3.72 3.72 3.72 3.72 93.05

exc. succ. σE 0 1.65 1.65 1.65 1.65 1.65 41.15
red. avg. dist. Ψ′ 0 0.016 0.016 0.016 0.016 0.016 0.411

norm. dec. δ 0 3.33 3.33 3.33 3.33 3.33 83.33
norm. exc. succ. σ 0 3.33 3.33 3.33 3.33 3.33 83.33

SPI Ψ 0 3.33 3.33 3.33 3.33 3.33 83.33
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 34: Two Points, Corr=3
7
− 2

35

√
30 ≈ 0.116, w = (1, 1, 2, 3, 3, 10), γ = 10.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 68.52 65.74 65.74 65.74 65.74 65.74 12.04

succ. σ′ 68.52 69.91 69.91 69.91 69.91 69.91 96.76

avg. dist. d 0.315 0.301 0.301 0.301 0.301 0.301 0.032
dec. δ′ 0 4.17 4.17 4.17 4.17 4.17 84.72

exc. succ. σE 0 1.39 1.39 1.39 1.39 1.39 28.24
red. avg. dist. Ψ′ 0 0.014 0.014 0.014 0.014 0.014 0.282

norm. dec. δ 0 3.95 3.95 3.95 3.95 3.95 80.26
norm. exc. succ. σ 0 3.95 3.95 3.95 3.95 3.95 80.26

SPI Ψ 0 3.95 3.95 3.95 3.95 3.95 80.26
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 35: Two Points, Corr=1
3
, w = (1, 1, 2, 3, 3, 10), γ = 10.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 70.30 67.46 67.46 67.46 67.46 67.46 13.37

succ. σ′ 70.30 71.61 71.61 71.61 71.61 71.61 96.70

avg. dist. d 0.297 0.284 0.284 0.284 0.284 0.284 0.033
dec. δ′ 0 4.16 4.16 4.16 4.16 4.16 83.33

exc. succ. σE 0 1.32 1.32 1.32 1.32 1.32 26.41
red. avg. dist. Ψ′ 0 0.013 0.013 0.013 0.013 0.013 0.264

norm. dec. δ 0 3.99 3.99 3.99 3.99 3.99 80.04
norm. exc. succ. σ 0 3.99 3.99 3.99 3.99 3.99 80.04

SPI Ψ 0 3.99 3.99 3.99 3.99 3.99 80.04
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 36: Two Points, Corr= 2
15

√
105− 1 ≈ 0.366, w = (1, 1, 2, 3, 3, 10), γ = 10.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 75.08 72.15 72.15 72.15 72.15 72.15 17.29

succ. σ′ 75.08 76.17 76.17 76.17 76.17 76.17 96.65

avg. dist. d 0.249 0.238 0.238 0.238 0.238 0.238 0.034
dec. δ′ 0 4.02 4.02 4.02 4.02 4.02 79.36

exc. succ. σE 0 1.09 1.09 1.09 1.09 1.09 21.57
red. avg. dist. Ψ′ 0 0.011 0.011 0.011 0.011 0.011 0.216

norm. dec. δ 0 4.05 4.05 4.05 4.05 4.05 79.77
norm. exc. succ. σ 0 4.05 4.05 4.05 4.05 4.05 79.77

SPI Ψ 0 4.05 4.05 4.05 4.05 4.05 79.77
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 37: Two Points, Corr=11
5
− 2

5

√
19 ≈ 0.456, w = (1, 1, 2, 3, 3, 10), γ = 10.5
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Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 83.95 81.23 81.23 81.23 81.23 81.23 26.10

succ. σ′ 83.95 84.56 84.56 84.56 84.56 84.56 97.01

avg. dist. d 0.161 0.154 0.154 0.154 0.154 0.154 0.030
dec. δ′ 0 3.33 3.33 3.33 3.33 3.33 70.91

exc. succ. σE 0 0.614 0.614 0.614 0.614 0.614 13.066
red. avg. dist. Ψ′ 0 0.006 0.006 0.006 0.006 0.006 0.131

norm. dec. δ 0 3.81 3.81 3.81 3.81 3.81 80.97
norm. exc. succ. σ 0 3.81 3.81 3.81 3.81 3.81 80.97

SPI Ψ 0 3.81 3.81 3.81 3.81 3.81 80.97
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 38: Two Points, Corr=1
3

+ 2
15

√
5 ≈ 0.631, w = (1, 1, 2, 3, 3, 10), γ = 10.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 89.16 86.90 86.90 86.90 86.90 86.90 32.47

succ. σ′ 89.16 89.50 89.50 89.50 89.50 89.50 97.58

avg. dist. d 0.108 0.105 0.105 0.105 0.105 0.105 0.024
dec. δ′ 0 2.60 2.60 2.60 2.60 2.60 65.11

exc. succ. σE 0 0.337 0.337 0.337 0.337 0.337 8.414
red. avg. dist. Ψ′ 0 0.003 0.003 0.003 0.003 0.003 0.084

norm. dec. δ 0 3.33 3.33 3.33 3.33 3.33 83.33
norm. exc. succ. σ 0 3.33 3.33 3.33 3.33 3.33 83.33

SPI Ψ 0 3.33 3.33 3.33 3.33 3.33 83.33
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 39: Two Points, Corr=3
7

+ 2
35

√
30 ≈ 0.742, w = (1, 1, 2, 3, 3, 10), γ = 10.5

Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6
luck λ 99.19 98.93 98.93 98.93 98.93 98.93 48.41

succ. σ′ 99.19 99.19 99.19 99.19 99.19 99.19 99.74

avg. dist. d 0.008 0.008 0.008 0.008 0.008 0.008 0.003
dec. δ′ 0 0.26 0.26 0.26 0.26 0.26 51.33

exc. succ. σE 0 0.003 0.003 0.003 0.003 0.003 0.549
red. avg. dist. Ψ′ 0 0.000 0.000 0.000 0.000 0.000 0.005

norm. dec. δ 0 0.50 0.50 0.50 0.50 0.50 97.50
norm. exc. succ. σ 0 0.50 0.50 0.50 0.50 0.50 97.50

SPI Ψ 0 0.50 0.50 0.50 0.50 0.50 97.50
Banzhaf β 0 2.78 2.78 2.78 2.78 2.78 86.11

Shapley-Shubik φ 0 3.33 3.33 3.33 3.33 3.33 83.33
ECPI ζ 0 0.00 0.00 0.00 0.00 0.00 100.00

Table 40: Two Points, Corr=10
29

+ 1
145

√
8445 ≈ 0.979, w = (1, 1, 2, 3, 3, 10), γ = 10.5
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B Proofs

B.1 Theorem 1

Proof. First, note that A0(q, p,X0), . . . , An(q, p,Xn) are, conditional on Q = q, P =
p, independent Bernoulli variables taking the value 1 with probability π(q, p) each,
whereas, unconditionally, they are possibly dependent Bernoulli variables with mean 1

2

and variance 1
4

each. We therefore have for i 6= j:

Cov(Ai(Q,P,Xi), Aj(Q,P,Xj)

=E
(
Ai(Q,P,Xi)Aj(Q,P,Xj)

)
− E

(
Ai(Q,P,Xi)

)
E
(
Aj(Q,P,Xj)

)
= Prob

(
Ai(Q,P,Xi) = 1 ∧ Aj(Q,P,Xj) = 1

)
− 1

2
· 1

2

=

∫
X2
6=

Prob
(
Ai(Q,P,Xi) = 1 ∧ Aj(Q,P,Xj) = 1|(Q,P ) = (q, p)

)
ν(d(q, p))− 1

4

=

∫
X2
6=

π(q, p)2ν(d(q, p))− 1

4

=E(π(Q,P )2)− E(π(Q,P ))2

= Var(π(Q,P )) = Var(Π).

The formula for the correlation is an immediate consequence of Var(A(Q,P,Xi)) = 1
4

for all i.

B.2 Corollary 4

Proof. Notice first that

ajbk + akbj = min(a, b)j max(a, b)k + min(a, b)k max(a, b)j

for all numbers a, b. Furthermore,

max(π(Q,P ), 1− π(Q,P )) =
1

2
(1 + |2π(Q,P )− 1|) =

1

2

(
1 +

√
ξ(Q,P )

)
,

min(π(Q,P ), 1− π(Q,P )) =
1

2
(1− |2π(Q,P )− 1|) =

1

2

(
1−

√
ξ(Q,P )

)
.

Together, this implies

π(Q,P )j(1− π(Q,P ))k + π(Q,P )k(1− π(Q,P ))j =(
1

2

)j+k ((
1−

√
ξ(Q,P )

)j (
1 +

√
ξ(Q,P )

)k
+
(

1−
√
ξ(Q,P )

)k (
1 +

√
ξ(Q,P )

)j)
Additionally, we have π(q, p) = 1− π(p, q) which implies z(q, p) = z(p, q). As (Q,P )

d
=

(P,Q), we also have

wj,k,l = E
(
π(Q,P ))j(1− π(Q,P ))kz(Q,P )l

)
= E

(
(1− π(Q,P ))jπ(Q,P )kz(Q,P )l

)
.

Combining all these, we arrive at the formula given in the Corollary.
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B.3 Proposition 3

Proof. 1. This is a direct consequence of 1. of Corollary 4.

2. By using the definition and factoring out, we get for part (a):

wm+1,ñ−m,l + wm,ñ+1−m,l

=E
(
π(Q,P )m+1 (1− π(Q,P ))ñ−m z(Q,P )l

)
+ E

(
π(Q,P )m (1− π(Q,P ))ñ+1−m z(Q,P )l

)
=E

(
π(Q,P )m (1− π(Q,P ))ñ−m (π(Q,P ) + 1− π(Q,P ))z(Q,P )l

)
=wm,ñ−m,l

With regard to (b), notice that, with the abbreviation ξ := ξ(Q,P ),(
1−

√
ξ
)m (

1 +
√
ξ
)ñ−m

+
(

1−
√
ξ
)ñ−m (

1 +
√
ξ
)m

−
((

1−
√
ξ
)m+1 (

1 +
√
ξ
)ñ−m−1

+
(

1−
√
ξ
)ñ−m−1 (

1 +
√
ξ
)m+1

)
=2
√
ξ

((
1−

√
ξ
)m (

1 +
√
ξ
)ñ−m−1

−
(

1−
√
ξ
)ñ−m−1 (

1 +
√
ξ
)m)

which is, uniformly in ξ ∈ [0, 1], non-negative (non-positive) if and only if m ≤ ñ−1
2

(m ≥ ñ−1
2

). The assertion then follows by combining this result with the formula
for w given in 1. of Corollary 4.

3. These, as well as 4., are easy but tedious consequences of the definitions and the
fact that

|N \ (M ∪ {i})| = n− |M |.
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