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Abstract
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1 Introduction

In recent years, measuring and detecting jumps in high-frequency data has
been quite a prominent topic in econometrics, testified by the following, al-
beit incomplete list of publications that all in some form deal with measuring
and detecting jumps: Aı̈t-Sahalia & Jacod (2009b,a), Andersen et al. (2007),
Andersen et al. (2008), Barndorff-Nielsen et al. (2008a, 2009), Barndorff-
Nielsen & Shephard (2004, 2006), Barndorff-Nielsen et al. (2006), Bollerslev
et al. (2009a), Huang & Tauchen (2005), Jiang & Oomen (2008), Lee & Myk-
land (2008), Lee & Ploberger (2009), etc. Numerous papers have used the
estimators and tests proposed in this literature, for a multitude of applica-
tions, including among others estimating and modeling volatility, detecting
jumps in prices, estimating and modeling jump intensities and jump sizes,
calibrating option pricing models, and, recently, for computing variance risk
premia1.
In this literature, jumps are understood as discontinuities in the price path,
typically assumed to represent market participants’ reaction to some impor-
tant information becoming known. However, there is significant evidence
that news are not processed instantaneously, but gradually by what is called
’partial price adjustment’:

• ’Clearly, the price does not jump from the old equilibrium level to the
new. Instead, trades occur at almost all of the possible nonequilibrium
prices along the way.’ (Ederington & Lee (1995))

• Adams et al. (2004) also state: ’stocks trade at several interim prices on
their way to a new equilibrium price that fully incorporates the news.’

Therefore, the notion of a jump, interpreted from an econometric point of
view, does not necessarily coincide with that of a jump, as determined by the
data. In this paper, we will therefore distinguish between ’economic’ jumps,
i.e. movements of prices constituting jumps from an economic perspective,
and ’mathematical’ jumps. The difference between these may also be stated
in terms of reaction speed: a mathematical jump is an inifinitely fast reaction
to news, while economic jumps are allowed to take several minutes in order
to fully reflect the new information.

There are prominent examples for economic jumps: Figures 1 and 2 display
intraday charts for Dow Jones Industrial Average and General Electrics on
January 3, 2001. On this day, federal funds rate was cut from 6.5% to 6%,

1cf. Carr & Wu (2009), Bollerslev et al. (2009b), Todorov (2010).
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and markets reacted to this surprising news by huge upward jumps. How-
ever, in compliance with the literature on partial price adjustment, these
economic jumps are not mathematical jumps in the data: prices adjusted
more or less gradually within several minutes following the news, taking a
lot of intermediate values before reaching their new equilibrium. This kind
of price movement has been called ’gradual jump’ by Barndorff-Nielsen et al.
(2009), and it causes severe problems when applying standard estimators
and tests. For instance, prevalent estimators of the jumps’ contribution to
volatility fail to capture the aforementioned economic jumps on January 3,
20012.

Until now, literature has neither provided procedures to cope with gradual
jumps nor analyzed the reasons for the standard procedures’ failure.
In this paper, we will fill both these gaps. The first, quite counter-intuitive
lesson to learn here is that increasing frequency does not solve the problem,
but worsens it dramatically. Empirical, theoretical as well as Monte Carlo
results indicate that, as a rule of thumb, sampling frequency should not be
chosen smaller than 5 or 10 minutes, as this is the amount of time markets
usually need to fully incorporate surprising new information. The second
lesson is that the most widely used approaches to measure and detect jumps
are heavily affected by gradual jumps, while some newer test procedures do
a better, yet still unsatisfactory job.
We therefore develop new estimators and tests build on intradaily highs and
lows of moderate frequency. This type of data is readily available, and the
information content embedded in highs and lows is surprisingly useful for dis-
entangling volatility and jumps. Additionally, OHLC data can be visualized
by candlestick charts, from which one can draw conclusions about diffusive
volatility and jumps: candlesticks with huge body and small wicks indicate
jumps, while those with rather small body and large wicks correspond to
diffusive price behaviour. Building on this intuition, we develop estimators
to separate diffusive volatility from positive and negative jumps. As these
can be computed individually for each intradaily subperiod, a bunch of ap-
plications becomes available: e.g., locating the timing of jumps within days,
studying diurnal patterns in diffusive volatility and jump intensities, and
measuring the volatility of volatility.
In line with the literature on partial price adjustment, applying the new
procedures to empirical data reveals the importance of economic jumps in
empirical data, in particular for stock market indexes, which exhibit much
more (economic) jumps than previously reported.

2For more details, see the following section.
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The rest of the paper is organized as follows: in Section 2, we consider gradual
jumps and show empirically how existing estimators react to their presence,
in particular when sampling frequency is chosen too high. Section 3 dis-
cusses the modeling of intraday prices, with special emphasis on the notions
of economic and mathematical jumps as well as volatility. In Section 4, we
provide some theory and Monte Carlo results on how different estimators and
tests are affected by gradual jumps, underlining the need to sample sparsely.
Section 5 demonstrates the merits of intradaily OHLC data of moderate fre-
quency, especially with respect to disentangling volatility and jumps, which
in turn is the subject of Section 6, where we construct new estimators for
diffusive volatility and the contributions of (upward, downward) jumps to
volatility. After presenting new tests to detect economic jumps, we apply
the new procedures both to simulated and empirical data in Section 7, while
Section 8 concludes.

2 Gradual Jumps: Why it is Necessary to

Sample Sparsely

Detecting jumps in asset prices and measuring their contribution to volatil-
ity are very important issues in financial econometrics, testified by numerous
publications in recent years. Their importance stems from the fact that un-
derstanding the dynamics of jump times and jump sizes is indispensable for
applications such as derivatives pricing or estimating value at risk. However,
modeling these dynamics builds on time series of jump times and jump sizes,
which makes it crucial to have procedures at hand to ex post detect and mea-
sure jumps. Typically, the contribution of jumps to volatility is measured
via an indirect approach: first, an estimate is computed for ’overall volatil-
ity’3, which is comprised of diffusive volatility and the sum of the jumps’
squares, and then we subtract from this quantity an estimate of diffusive
volatility. For ’overall volatility’, the most prominent estimator is the widely
used realized variance:

RV :=
N∑
i=1

r2
i,N , (1)

3’Overall volatility’, ’diffusive volatility’ and similar notions wille be made more precise
in Subsection 3.2.
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where ri,N := p i
N
− p i−1

N
(i = 1, . . . , N) denotes the returns of some log-price

process pt over the time interval4 [ i−1
N
, i
N

]. To measure diffusive volatility, the
dominant approach is to use multipower variation, e.g. bipower or tripower
variation, developed by Barndorff-Nielsen & Shephard (2004, 2006):
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π

2

N
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N−1∑
i=1

|ri,N | |ri+1,N |, (2)

TPV :=
π

3
2

2 Γ(5
6
)3

N

N − 2

N−2∑
i=1

|ri,N |
2
3 |ri+1,N |

2
3 |ri+2,N |

2
3 . (3)

Alternatively, one can use the so-called minimum and median realized vari-
ance estimators of Andersen et al. (2008):

MinRV :=
π

π − 2

N

N − 1

N−1∑
i=1

min(|ri,N |, |ri+1,N |)2, (4)

MedRV :=
π

π − 4
√

3 + 6

N

N − 2

N−2∑
i=1

med(|ri,N |, |ri+1,N |, |ri+2,N |)2. (5)

On January 3, 2001, federal funds rate was cut to 6%. This very surprising
news became known shortly after 1 p.m., and stock markets reacted to it by
a huge upward jump, as can be seen from Figures 1 and 2, which show the
intraday prices on that day for Dow Jones Industrial Average market index
and General Electrics. For DJIA, this more than 3% jump was the largest
intraday jump ever in its history. Correspondingly, the sum of squared jumps
on that day was about 10%2, while it was even slightly higher for GE.

We computed estimates of the squared jumps’ sum for both assets using the
aforementioned estimators5 for frequencies ranging from 1 minute to 30 min-
utes (N = 390 to N = 13), including all subsampled versions for frequencies
larger than 1 minute, e.g. for 5 minutes frequency, one subsampled version
makes use of the intervals 09:30-09:35, 09:35-09:40, etc., the next one uses
09:30-09:31, 09:31-09:36, etc., . . ., and the last one builds on 09:30-09:34,
09:34-09:39, etc. The first two columns of Figures 3 and 4 show the results
(measured in %2): most of the estimates fall well below the blue line which

4For ease of notation, we take the trading interval to be [0, 1] and refer to it as a ’day’,
although other time spans are perfectly feasible. We also suppress a further index denoting
the day under consideration.

5We also tried other estimators and different days with changes in federal funds rate,
with essentially the same results, which are therefore not presented here.
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indicates the squared jump estimated by visual inspection of Figures 1 and 2,
and the average of the subsampled estimators, given by the red line, not only
fails to reach the blue target line, but even becomes negative for the high-
est frequencies, although the sum of squared jumps clearly is a non-negative
quantity. As a consequence, tests on the presence of jumps, based on these
estimators, will therefore typically fail to detect a jump on this particular day.

Naturally, in view of this surprising and very unpleasant result, the following
question arises: why do the most prominent estimators fail to capture these
jumps and for high frequencies even tend to produce negative values for the
sum of squared jumps, a quantity that is known to be nonnegative? The
answer becomes evident upon a closer look at Figures 1 and 2: the jumps
happen gradually over several minutes, i.e. prices do not adjust to the new
value instantaneously, but by a movement that might be seen either as a
very steep, more or less straight line, or as a series of smaller jumps.6 This
phenomenon, i.e. the ’gradual adjustment of prices to the new information’
(Smidt (1968, p. 252)), has been called ’gradual jump’ by Barndorff-Nielsen
et al. (2009), and until now, there is no estimator known to be able to ac-
comodate gradual jumps: Barndorff-Nielsen et al. (2009) suggest to simply
remove them from the data, which obviously presumes the (non-trivial) abil-
ity to detect those days when prices exhibit a gradual jump. In the remainder
of this paper, we will fill this gap and develop both methods to detect gradual
jumps and to measure them appropriately. However, before pursuing this, we
want to direct the reader’s attention to another phenomenon identifiable by
Figures 3 and 4: for increasing frequencies, the estimates seem to converge
to 0. A possible explanation comes from the gradual nature of the jump: it
does not consist of one large jump, but rather is composed of several still
large, but smaller upward movements. Due to the convexity of the square
function, the sum of the squared parts of the gradual jump is much smaller
than the squared jump itself, thereby entailing an ever smaller value for the
squared jumps’ sum.

As a consequence, too high frequencies should be avoided, as choosing too
small subintervals leads to the jump being divided into its gradual parts.
Instead we should sample with moderate frequencies of say 5 or 10 minutes,
because we can safely expect markets to react to news within a period of 10
minutes. At this point, we also want to stress that too high frequencies do
not only cause problems regarding the estimation of the jumps’ contribution

6The nature of gradual jumps will be discussed in Subsection 3.1, while we will inves-
tigate the estimators’ response to gradual jumps more thoroughly in Subsection 4.1.
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to volatility, but also typically produce too small estimates of ’overall volatil-
ity’, for exactly the same reasons as explained above7.

A further advantage of sampling sparsely is that a possible bias due to mi-
crostructure noise becomes vastly irrelevant, thus relieving us from the bur-
den to investigate estimators with respect to their robustness to the presence
of microstructure noise. In the end, for all the reasons given above, we deem
it best to sample at moderate frequencies, i.e. frequencies not exceeding 5
minutes.

We will now proceed with some general contemplations concerning the no-
tions of volatility, diffusions, and jumps.

3 On the Modeling of Intraday Asset Prices:

Jumps, Drift & Volatility

In high-frequency finance, the prototypical model for intraday prices is given
by the ’Brownian semimartingale plus (rare) jumps’ model

pt = p0 +

t∫
0

µudu+

t∫
0

σudWu + J
(p)
t , (6)

where

• pt denotes the logarithmic prices of some asset at time t,

• the drift process µt governs the instantaneous mean return at time t,

• the time-varying spot volatility8 σt accounts for the variability of the
returns,

• W denotes a standard Brownian motion,

• J (p) is a pure-jump process describing discontinuous changes in log-
prices, often assumed to exhibit only finitely many jumps in any time
interval9.

7See also Subsection 4.1.
8As is common practice in econometrics, we will call σ as well as σ2 volatility.
9The stochastic processes appearing in (6), i.e. µ, σ, and J (p), are subject to some

merely technical conditions, for which we refer the reader to the respective literature.
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This model, in slightly less general form, dates back at least to Merton (1976):
according to Merton, the continuous price components, i.e. the drift part
t∫

0

µudu and the diffusive part
t∫

0

σudWu, model ’normal’ vibrations in price,

taking place due to new information that causes only marginal changes in
the stock’s value, while the jump part models ’abnormal’ vibrations in price,
happening due to the arrival of important new information about the stock
that has more than a marginal effect on price.

Although the ’Brownian semimartingale plus (rare) jumps’ model is by far
the most widely entertained one in high-frequency econometrics, it should be
noticed that several authors prefer other models in favor of (6), for reasons
such as better description of available data or better explaining of option
prices. These models include replacing the rare jumps process and/or the
Brownian motion of (6) by more general Lévy processess or fractional Brow-
nian motion, an approach esp. popular in financial mathematics. We will,
however, stick to the model (6), with the understanding that (6) describes
the unobservable ’true’ prices, while empirical data are seen as a noisy ver-
sion of (6). Within this framework, we will now turn our attention to the
notion of jumps.

3.1 Mathematical vs. Economic Jumps

When given a discrete time series, it is typically quite hard to decide whether
this time series exhibits a jump. The difficulty does not stem from the fact
that we might not have enough data to decide the question at hand, it rather
is caused by a more fundamental problem: due to the absence of an exact
mathematical definition, we have to resort to more vague concepts like

’jumps [...] represent large, infrequent moves over a short time.
For example, with a very lengthy historical data set of, say daily
prices on stock, you might want to define a jump as any move
greater than 10% or, perhaps any move greater than 5 times the
historical daily standard deviation.’10

With continuous-time models, this ambiguity seems to disappear, as in that
case there is an obvious mathematical definition of a jump:

’With the underlying theoretical models, it’s clear: jumps are
discontinuous moves.’10

10Quoted from www.optioncity.net/faqs.htm
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In fact, this mathematical definition is predominant in the literature: a
continuous-time log-price process (pt)t∈[0,1] is said to jump at some time tJ if
there is a difference between the price ptJ at time tJ and the price immedi-
ately before time tJ , ptJ− := lim

t↑tJ
pt.

11 The size of the jump at time tJ , ∆ptJ ,

is then defined as
∆ptJ := ptJ − pTJ−. (7)

However, the existence of a sound mathematical definition of jumps doesn’t
disburden us from our duties as econometricians, namely putting theoretical
(mathematical) concepts into economic contexts.12 Phrased differently, we
have to ask ourselves about what constitutes an ’economic’ jump. In this
regard, there are at least two important lines of thought:

• Taking the mathematical notion of a jump for granted, an economic
jump certainly has to be economically relevant. We do not want to
give a precise definition of what should be understood by ’economically
relevant’, but the idea here is to rule out theoretical (mathematical)
jumps that are so tiny, say a hundredth of a tick, that their economic
significance might be doubted13. We also emphasize that ’economic
significance’ does not constitute an absolute concept but must be in-
terpreted within a given context: tiny (mathematical) jumps might for
some applications be more or less irrelevant, while they may play a
crucial role for others, for instance in derivatives pricing.

• Taking a step back, we might also ask whether an economic jump nec-
essarily has to be a mathematical jump in observed prices: a disconti-
nuity in prices is represented by a vertical line in a plot, i.e. by a line
of infinite slope. Now, for instance, if prices suddenly start to rise by
a very steep line and stop doing so after a few minutes, then we might
interpret that movement as a jump, although it is mathematically not
necessarily discontinuous14. As an example, we recall the up to now
largest intraday jump in the history of Dow Jones Industrial Average
on January 3, 2001 (see Figure 1). This gradual jump most clearly
has to be considered as an economic jump, even if it may not be a

11Prices are typically assumed to be right-continuous. This means that for every time
t0, prices pt0 at time t0 and pt0+ := lim

t↓t0
pt immediately after time t0 coincide: pt0+ = pt0 .

12I’m indebted to Christian Pierdzioch for confronting me with the question ’What is
the meaning of a jump in a continuous-time setting?’.

13Particularly small jumps are very hard to detect anyway, for details the reader is
referred to Aı̈t-Sahalia & Jacod (2009a,b), Lee & Ploberger (2009).

14Rasmussen (2009) models jumps by short periods of large drift, i.e. as continuous
movements.
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mathematical jump in the data, but possibly a more or less continuous
movement from the old equilibrium price to the new one.

Building on the ideas used for discrete time series, we might therefore
think of an economic jump as an abrupt, rather large price movement,
typically taking place during a very short time period after some eco-
nomic news is released.

Given the above, our understanding of economic jumps can be summarized
as follows: economic jumps are jumps in the ’true’, but unobservable price
process that are relevant to the economic application or caused by economic
news, while observed prices do not necessarily have to show a price disconti-
nuity: in the data, the economic jump might appear as comprised of a series
of smaller jumps, or as a short period of quite large drift15.

Although it might also be possible to model gradual jumps by postulating
specific properties of the jump process J (p), namely clustering of jumps in
time as well as dependence of jump sizes, we will not pursue this approach for
the following reasons: first of all, we want to catch the jump in its entirety,
not divided into several parts: in the DJIA example, we think there was a
more than 3% upward jump, and not several, say 10, upward jumps of 0.3%
each, in particular, as it was a reaction to exactly one economic news, the
cutting of the interest rate. A second reason not to follow this approach is
the fact that we don’t even know whether the only discretely observed data
are better described by a series of several smaller jumps or by a short period
of large drift.

On theoretical grounds, assume that at time tJ an important economic news
becomes known which causes log-prices to jump by an amount of ∆. If ob-
served log-prices p̃ adjust to the new level instantaneously, we have a math-
ematical jump:

p̃tJ = p̃tJ− + ∆. (8)

If, however, the reaction to the news takes some time ∆t, then the new
log-price p̃tJ− + ∆ will result only at time tJ + ∆t,

p̃tJ+∆t = p̃tJ− + ∆, (9)

while between times tJ and tJ + ∆t, observed prices somehow adjust to their
new level. From this point of view, mathematical jumps are infinitely fast

15From a more statistical point of view, it might be interesting to develop methods to
be able to decide on how exactly the economic jump comes about in the data. From the
econometric point of view taken in this paper, however, this question is of only minor
importance.
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reactions to news, while economic jumps are reactions to news at finite speed.
There are in fact several papers in the finance literature that address the way
and speed with which prices adjust to new information: e.g., inter alia, Eder-
ington & Lee (1995), Adams et al. (2004), Chen & Rhee (2010). The common
finding of all these papers is what is called ’partial price adjustment’: prices
do not adjust immediately to new information, but gradually over several
minutes, the speed of price adjustment depending on lots of variables like
asset class, type of news, market organization, firm size, short sales being
allowed or not, and so on.

In particular, we learn from the above that economic jumps might appear
in the data disguised as short periods of large drift and small spot volatility,
while mathematical jumps could be interpreted as the limit for reaction speed
approaching infinity. We will therefore in Section 4 investigate existing esti-
mators and tests with respect to their behaviour to short intraday periods of
significant drift and small volatility. In the next subsection, however, we first
define more precisely the quantities that we are interested in estimating.

3.2 Volatility: A Single Word to Denote a Plethora of
Related, Yet Different Concepts

’Arguably, no concept in financial mathematics is as loosely interpreted and
as widely discussed as ’volatility’. [...] ’volatility’ has many definitions, and

is used to denote various measures of changeability.’ 16

’Volatility is a measure of price variability over some period of time. [...]
Volatility can be defined and interpreted in five different ways.’ 17

’Yet, the concept of volatility is somewhat elusive, as many ways exist to
measure it and hence to model it.’ 18

Although the above quotations make it clear that ’volatility’ is a rather vague
concept, volatility estimation has been a very prominent topic in financial
econometrics for decades, since many financial applications require knowledge
or at least some estimate of price volatility, e.g. asset and derivatives pricing,
risk management or portfolio selection. As both measuring and testing for
jumps are inextricably linked to volatility measurement, this paper is also
going to contribute to the literature concerned with estimating volatility in

16Shiryaev (1999, p. 345)
17Taylor (2005, p. 189)
18Engle & Gallo (2006, p. 4)
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a continuous-time setting. Yet even in this setting and letting aside implied
volatility, volatility may refer to different concepts:

• we could be interested in what is called both ’notional volatility’ (An-
dersen et al. (2010)) and ’ex-post variation’ (Barndorff-Nielsen et al.
(2008a)): the quadratic variation of the log-price process (over some
day)

QV := lim
N→∞

N∑
i=1

r2
i,N . (10)

Given log-prices on an equidistant grid ti,N := i
N

, i = 0, . . . , N , the
most natural estimator for QV is realized volatility as given by (1).
Indeed, there are a lot of papers trying to model and forecast the time
series of daily realized volatilities, e.g. inter alia Andersen et al. (2007),
Bollerslev et al. (2009a), Corsi et al. (2008).

• overall volatility QV coincides with

IV :=

1∫
0

σ2
udu, (11)

when log-prices follow a Brownian semimartingale, i.e.

pt = p0 +

t∫
0

µudu+

t∫
0

σudWu. (12)

IV is called integrated variance or integrated volatility19. In the more
general case, i.e. in the presence of jumps, QV can be decomposed into
IV and SSJ,

QV = IV + SSJ, (13)

with the sum of the squared jumps

SSJ :=
∑
t∈[0,1]

(∆pt)
2. (14)

As IV contains information about the contribution of the continuous
part of the log-prices to ’volatility’, whereas SSJ can tell us some-
thing about the variation of returns due to jumps in prices, one of-
ten speaks of IV as diffusive volatility or diffusive risk and calls SSJ

19As is common practice in econometrics, we will use ’variance’ and ’volatility’ exchange-
ably.
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jump risk or volatility due to jumps. Starting with the seminal pa-
per Barndorff-Nielsen & Shephard (2004), there are a lot of papers
addressing the issue of disentangling QV into IV and SSJ, e.g. inter
alia Huang & Tauchen (2005), Barndorff-Nielsen & Shephard (2006),
Barndorff-Nielsen et al. (2006), Veraart (2010). In addition, several
authors have come up with models for daily IV, often modeling bi- or
multivariate series containing at least (transformations of) estimators
for (QV, IV), e.g. inter alia Andersen et al. (2007), Bollerslev et al.
(2009a), Corsi et al. (2008).

• In many contexts, for instance when considering the value at risk of
some financial position, it is not only important to know the risk due
to jumps, but to have asymmetric measures of both risks of upward and
downward jumps. Theoretically, this amounts to decomposing SSJ into

SSJ = SSpJ + SSnJ, (15)

with the sum of squared positive jumps

SSpJ :=
∑
t∈[0,1]

1∆pt>0 (∆pt)
2 (16)

and the sum of squared negative jumps

SSnJ :=
∑
t∈[0,1]

1∆pt<0 (∆pt)
2, (17)

a topic to which the literature has turned only recently, see Barndorff-
Nielsen et al. (2008b), Klößner (2008), Patton & Sheppard (2009). In
particular, SSpJ and SSnJ are found to have different impacts on future
volatility, even for quite long horizons, see Patton & Sheppard (2009).

• Another decomposition of volatility, more specifically quadratic varia-
tion QV, is proposed by Barndorff-Nielsen et al. (2008b) and Patton &
Sheppard (2009): ’good’ volatility emanating from positive returns,

1

2
IV + SSpJ , estimated by RS+ :=

N∑
i=1

1ri,N>0 r
2
i,N , (18)

and ’bad’ volatility emanating from negative returns,

1

2
IV + SSnJ , estimated by RS− :=

N∑
i=1

1ri,N<0 r
2
i,N . (19)

Again, good and bad volatility are found to have different impact on
future volatility.
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As all the mentioned notions of volatility are functions of IV, SSpJ, and SSnJ,
the aim of this paper is to provide methods to measure these quantities.
However, in view of the above contemplations concerning economic jumps,
we will put special emphasis on adequately measuring these quantities when
jumps manifest themselves as economic jumps in the data.

4 The Effect of Gradual Jumps on Existing

Estimators and Tests

In order to study the effects of economic jumps, we assume that the unob-
served true log-prices p exhibit a jump at time tJ , when prices jump by ∆
from ptJ− to ptJ− + ∆. Observed prices p̃, however, are characterized by a
finite reaction speed, thus it takes a time span of ∆t until observed prices
have fully adjusted to the new level ptJ− + ∆ at time tJ + ∆t. Although
a more general treatment would be possible, for the sake of convenience we
assume the adjustment to be linear20:

p̃t = ptJ− +
∆

∆t

(t− tJ) for tJ 6 t 6 tJ + ∆t. (20)

We further assume that we are given a rather high, but fixed frequency such
that

1

N
� ∆t. (21)

In this setting, the jump ’begins’ at tJ ∈ [ i1−1
N
, i1
N

], with i1 = dtJNe, and
’ends’ at tJ + ∆t ∈ [ i2−1

N
, i2
N

], with i2 = dtJN + ∆tNe. Additionally, we
assume that there are no other jumps on that day and no other frictions,
entailing p̃ = p outside of [tJ , tJ + ∆t] and r̃i,N := p̃i,N − p̃i−1,N = ri,N for
i < i1 and i > i2.

4.1 How Gradual Jumps Affect Existing Estimators

To start with, we have a look at the properties of RV as an estimator for
QV. Under (20) and (21), some easy calculations show that for the observed

data, realized variance R̃V :=
N∑
i=1

r̃2
i,N takes the following form:

R̃V =
∑

i<i1 ∨ i>i2

r2
i,N +

(
(ptJ− − p i1−1

N
) + (

i1
N
− tJ)

∆

∆t

)

)2

(22)

20Obviously, ∆
∆t

plays the role of a drift rate during [tJ , tJ + ∆t].
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+
i2 − i1 − 1

∆2
tN

2
∆2 +

(
(tJ + ∆t −

i2 − 1

N
)

∆

∆t

+ (p i2
N
− (ptJ− + ∆))

)2

.

As both i1
N
− tJ 6 1

N
and tJ + ∆t − i2−1

N
6 1

N
, we can infer from (21) that

(ptJ− − p i1−1
N

) + ( i1
N
− tJ) ∆

∆t
and (tJ + ∆t − i2−1

N
) ∆

∆t
+ (p i2

N
− (ptJ− + ∆)) will

be essentially determined by the diffusive parts in ptJ− − p i1−1
N

and p i2
N
−

(ptJ− + ∆). Comparing unobservable ’true’ realized volatility RV =
N∑
i=1

r2
i,N

to empirical realized volatility R̃V, using i2− i1− 1 ≈ ∆tN , then shows that
RV−R̃V is essentially given by

R̃V ≈ −RV−
∑

i1<i<i2

r2
i,N −∆2 (1− 1

∆tN
). (23)

From (23), we can learn two things: first, the economic jump leads to inte-
grated volatility being slightly underestimated, as the equivalent of diffusive
volatility over [ i1

N
, i2−1

N
] is missing in R̃V. The effect is however more or less

negligible since the interval’s length is smaller than ∆t, which comprises only
a few minutes.
The second consequence of (23) is much more important: due to (21), 1

∆tN

is quite small so that R̃V doesn’t capture the jump adequately, the problem
getting even worse with increasing frequency. Put differently, for increasing
frequency, R̃V will more and more fail to grasp the gradual jump’s contribu-
tion to overall volatility, eventually completely ignoring the gradual jump.

We will now turn our attention to bipower variation BPV as an estimator of
diffusive volatility IV. Again, by some easy calculations and similar approx-

imations as above, we find for B̃PV := π
2

N∑
i=2

|r̃iN ||r̃i−1,N |:

B̃PV ≈ π

2

∑
i<i1 ∨ i>i2+1

|riN ||ri−1,N |+
π

2
∆2 1

∆tN
, (24)

from which we see that B̃PV is distorted as an estimator for IV, the strength
of the distortion depending on squared jump size ∆2 and becoming negligible
when frequency is high enough.

Combining (22), (24), we find for R̃V − B̃PV as an estimator of SSJ:

R̃V − B̃PV ≈
∑

i<i1 ∨ i>i2

r2
i,N −

π

2

∑
i<i1 ∨ i>i2+1

|riN ||ri−1,N |+ (1− π

2
)

∆2

∆tN
. (25)
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In (25), the difference of the sums is an estimator for the squared jumps out-
side of [ i1−1

N
, i2
N

], which equals 0, as we have assumed the absence of further

jumps. Therefore, at least for large economic jumps ∆, R̃V − B̃PV is domi-
nated by (1− π

2
) ∆2

∆tN
< 0, which explains both the negative estimates for SSJ

in Figures 3 and 4 as well as their converging to 0 for increasing frequencies.

With regard to tripower variation TPV, minimum realized variance MinRV,
and median realized variance MedRV, similar approximations show that these
estimators have the same properties as BPV: integrated volatility IV will be
overestimated in the presence of economic jumps, while the economic jumps
themselves aren’t captured properly, esp. for high frequencies, when there is
a tendency to produce negative estimates for the squared jumps’ sum SSJ,
resulting from the constants π3/2

2Γ(5/6)3 , π
π−2

, π
π−4
√

3+6
in (3), (4), (5) exceeding 1.

Summarizing, we can state that existing estimators of diffusive volatility IV
are upward biased, while both overall volatility QV and jump volatility SSJ
are severely underestimated in the presence of economic jumps, the under-
estimation growing stronger with increasing frequency, routinely producing
negative estimates of SSJ for very high frequencies.

We will now investigate several tests for detecting jumps with respect to their
reaction to gradual jumps.

4.2 How Gradual Jumps Affect Existing Jump Tests

The first procedures to test for jumps have been developed by Barndorff-
Nielsen & Shephard (2004, 2006), while Huang & Tauchen (2005) have sin-
gled out one specific test of that family, which they found to have the best
properties with respect to size. In the sequel, literature has seen several other
proposals, including21 those by Jiang & Oomen (2008), Aı̈t-Sahalia & Jacod
(2009b), and Lee & Ploberger (2009). We will now have a look at how these
tests respond to the presence of gradual jumps.

The well-known jump test by Barndorff-Nielsen & Shephard (2006) in its

21In our comparison, we don’t include the tests by Lee & Mykland (2008) and Rasmussen
(2009), as these are similar to the Lee/Ploberger test, but much worse in terms of holding
their level for moderate frequencies or heavily fluctuating volatility.
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version by Huang & Tauchen (2005) looks as follows:

zTP,rm :=
RV−BPV

RV√
(π

2

4
+ π − 5) 1

N
max(1, TPQ

BPV2 )

·∼ N(0, 1), (26)

where TPQ denotes an estimator of integrated quarticity IQ :=
1∫
0

σ4
t dt, and

the presence of mathematical jumps shifts the test statistic to the right. In
view of the results of the previous subsection concerning the properties of
RV−BPV as an estimator of SSJ, we can infer that for high frequencies,
gradual jumps will tend to produce small, albeit negative values for the
numerator22 of (26). As the test is right-sided, we expect it to have only
poor power against this alternative, esp. for high frequencies23. As there is
a tendency for negative values of the test statistic, we even expect the test’s
power eventually to fall below its nominal size.
A particularly nasty consequence of the above finding is that gradual jumps
and mathematical jumps tend to cancel out each other: while the test statis-
tic is diminished by gradual jumps, it increases due to mathematical jumps,
which results in gradual jumps reducing the test’s ability to detect mathe-
matical jumps, if these occur on the same day.

The jump test of Jiang & Oomen (2008) in its ’ratio’-version24 works as
follows:

SwVr :=
N ÎV√

15
9

ÎS

SwV−RV

RV

·∼ N(0, 1), (27)

where SwV (called ’swap-variance’) is defined as

SwV := 2
N∑
i=1

(eri,N − 1− ri,N), (28)

and ÎV and ÎS are estimators of integrated volatility IV and integrated six-

ticity IS :=
1∫
0

σ6
t dt. Upward jumps shift SwVr to the right, while downward

22For the test at hand, as well as for some of the following ones, the effect of gradual
jumps on the denominator can be more or less safely ignored.

23For all tests discussed in the text, we expect significant power against a gradual jump
as soon as frequency is chosen low enough, i.e. such that the the jump is contained in only
one subperiod [ i−1

N , i
N ].

24There are also versions called ’diff’ and ’log’, cf. Jiang & Oomen (2008).
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jumps shift the test statistic to the left25. The null hypothesis of no jumps
thus is rejected when SwVr takes a too large absolute value.

Using the notations and techniques of the previous subsection, we easily find

for S̃wV := 2
N∑
i=1

(er̃i,N − 1− r̃i,N) the following approximation for S̃wV− R̃V:

S̃wV − R̃V ≈
∑

i<i1 ∨ i>i2

(
2(eri,N − 1− ri,N)− r2

i,N

)
(29)

+
1

∆tN

(
2(e

∆
∆tN − 1− ∆

∆tN
)− (

∆

∆tN
)2

)
In the absence of further jumps, the first sum of (29) will be of order O( 1

N3/2 ),
while the second term, which is of the same sign as ∆, might be substantial,
provided that ∆

∆tN
is not too small. We therefore expect the swap variance

test to have non-trivial power against gradual jumps, which decreases with
increasing frequency.

The jump test of Aı̈t-Sahalia & Jacod (2009b) builds on power variations of
different frequencies. Again, we select a specific test26: the in the absence of
jumps asymptotically standard normally distributed test statistic

√
N(Ŝ(4, 2)− 2)√

160
3

ÎO

ÎQ
2

·∼ N(0, 1), (30)

with ÎO and ÎQ estimators for integrated octicity IO :=
1∫
0

σ8
t dt and integrated

quarticity IQ. The ratio

Ŝ(4, 2) :=

N/2∑
i=1

(p 2i
N
− p 2(i−1)

N

)4

N∑
i=1

(p i
N
− p i−1

N
)4

(31)

is shifted towards 1 in the presence of mathematical jumps, so that we re-
ject the null hypothesis of no jumps for strongly negative values of the test
statistic. Now, what happens in the presence of a gradual jump? In the

25In principle, positive and negative jumps on the same day could therefore cancel out
each other.

26Results for other members of that test family are similar.
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numerator of Ŝ(4, 2), the term (2 ∆
∆tN

)4 will appear essentially i2−i1
2
≈ 1

2∆tN

times, while in the denominator, essentially i2− i1 ≈ 1
∆tN

instances of ( ∆
∆tN

)4

will show up. Thus Ŝ(4, 2) will be shifted towards 8, resulting in largely
positive values of the test statistic. For this reason, we expect this test to
have particularly low power against gradual jumps, which will be vanishing
for high frequencies.
For the same reasons as explained above for the Barndorff-Nielsen/Shephard
test, gradual jumps will hinder the test detecting mathematical jumps hap-
pening on the same day, as these two types of jumps shift the test statistic
to different directions.

Finally, we want to discuss the test of Lee & Ploberger (2009), which attains
the optimal detection rate for testing against mathematical jumps. It is
based on the test statistic

τ := max
i=l+1,...,N

r2
i,N

1
l

l∑
k=1

r2
i−k,N

, (32)

where l is chosen either as l = 4 logN or l = 2 logN , and a certain positive
transformation of τ is exponentially distributed under the null hypothesis of
no jumps27. The effect of gradual jumps on τ are not that clear: on one
hand, the gradual jump will enlarge r2

i,N in the numerator approximately by
∆2

∆2
tN

2 for i1 < i < i2, on the other hand, the denominator will also increase for

certain values of i (in relation to l, i1, and i2). In particular, we expect higher
ratios for i in the vicinity of i1, as the numerator will increase by a larger
amount than the denominator, while for i slightly larger than i2, the ratios
will be reduced, as only the denominator becomes affected by the gradual
jump. All in all, however, due to the test statistic τ being the maximum over
all ratios, we expect the test to have significant power against the alternative
of gradual jumps.

4.3 Monte Carlo Study

In order to confront the previous subsections’ theoretical considerations with
data, we have simulated 30,000 paths of Brownian motion subjected to at
least one gradual jump per day: more precisely, we calibrated a high and a
low volatility setting, by taking σ2 = 10−4 (σ2 = 9 · 10−6), matching typi-
cal empirical estimates for daily volatility of stocks (indexes). The gradual

27cf. Lee & Ploberger (2009)
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jump’s starting time tJ was drawn uniformly on [0, 1], the jump lengths ∆t

according to a shifted binomial distribution taking values from 1 minute to
13 minutes with a mean jump length of 7 minutes, and jump sizes of ei-
ther sign were drawn with absolute values from a uniform distribution on28

[0.3%, 0.9%].

Table 1 and the first four rows of Tables 2 and 3 (p. 41, 42) show bias and
RMSE for the estimators considered in this section, for frequencies ranging
from sampling every minute to the very sparse half-hourly sampling, with
bold printing indicating optimal frequency. In general, all estimators’ vari-
ances decrease with frequency, so that the RMSE-minimizing frequency is al-
ways less or equal to the bias-minimizing frequency. The reader should keep
in mind that diffusive volatility IV equals IV = σ2 = 1%2 (IV = σ2 = 0.09%2)
in the high (low) voaltility setting, while the uniformly on [0.3%, 0.9%] dis-
tributed absolute values of the jumps are on average responsible for jump
volatility of SSJ = 0.39%2. Quadratic variation QV therefore varies between
1.09%2 and 1.81%2 (0.18%2 and 0.9%2), with an expected value of 1.39%2

(0.48%2).

1 min 3 min 5 min 10 min 15 min 30 min
σ2 = 10−4 -0.344 -0.245 -0.175 -0.090 -0.057 -0.026

(0.404) (0.321) (0.287) (0.319) (0.378) (0.526)

σ2 = 9 · 10−6 -0.346 -0.247 -0.177 -0.091 -0.060 -0.028
(0.399) (0.290) (0.217) (0.153) (0.139) (0.141)

Table 1: Bias (and RMSE) of RV (in %2)

Table 1 shows simulation bias and RMSE of RV, when estimating QV =
IV + SSJ: as predicted by the theoretical results in Subsection 4.1, the grad-
ual jumps are not captured well by RV, resulting in a negative bias of RV. It
is also evident from Table 1 that this effect becomes more and more promi-
nent when frequency increases. Both bias and RMSE are substantial, esp.
for high frequencies and the low volatility setting, but also when choosing
optimal frequencies.

We will now turn our attention to Table 2 (p. 41), the first four rows of which
display the performance of bi- and tripower variation as well as minimum and

28Fair (2002) defines ’large price changes’ or ’events’ by returns of a maximal length of
5 minutes exceeding 0.75% in absolute value.
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median realized variance when estimating diffusive volatility IV.
From theory, we know that the bias will disappear when frequency approaches
infinity. However, let us explain why both mean and RMSE do not depend
monotonuously upon frequency: on one hand, increasing sampling frequency
helps reducing the impact of a jump, as all estimators combine in some way
or another the jump return with returns of adjacent intervals, which will
become smaller with increasing frequency, provided that these intervals do
not contain parts of the jump. On the other hand, for high frequencies, the
jump becomes more and more ’gradual’, i.e. the jump is divided into more
and more parts, resulting in an ever higher number of adjacent intervals
containing parts of the jump, which will therefore not be damped at all.
In the high volatility setting, sampling at the 1 minute frequency turns out
to be optimal among the frequencies considered, while in the low volatility
setting, results are varying very much across estimators. In view of the
quantity to be estimated, IV = σ2 = 1%2 (IV = σ2 = 0.09%2), bias and
RMSE are substantial, esp. in the low volatility setting, when they are almost
always larger than IV, the quantity to be estimated.
All in all, when estimating diffusive volatility IV in the presence of gradual
jumps, sampling frequency should be chosen as high as possible, in particu-
lar when jump sizes are large in comparison to diffusive volatility, as in the
low volatility setting, for which frequencies beyond 1 minute are needed for
estimating diffusive volatility IV adequately.

With respect to the estimation of SSJ, Table 3 (p. 42) tells a completely
different story: in line with theory, RV−BPV etc. are not capable of cap-
turing the gradual jumps, their bias increasing with frequency even beyond
the average SSJ of 0.39%2, indicating that at the 1 minute frequency, these
estimators perform worse than the very bad estimator ŜSJ ≡ 0, which would
be less biased29.

Summarizing the effect of gradual gradual jumps on the estimation of the
different components of volatility, we find that the presence of gradual jumps
causes prevalent estimators to be severely biased. While the bias disappears
asymptotically when estimating diffusive volatility IV, increasing the sam-
pling frequency makes things even worse when estimating the jumps’ contri-
bution to volatility, SSJ, or, consequently, overall volatility QV = IV + SSJ.
We therefore need new estimators for these quantities based on moderate
sampling frequencies, which we will develop in the next sections.

29For all estimators of SSJ, both bias and RMSE could be slightly improved by trunca-
tion at 0.
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In Figure 5, we report the power of the jump tests discussed in the previ-
ous subsection: the graphs show power after size-adjusting with quantiles
obtained from simulating Brownian motion (without jumps), as some of the
tests exhibit severe size distortions for moderate frequencies30. The the-
oretical results are confirmed by Figure 5: while the tests by Barndorff-
Nielsen/Shephard and Aı̈t-Sahalia/Jacod have generally only low power,
falling below the non-trivial line for the frequency of 1 minute, the tests
by Jiang/Oomen and Lee/Ploberger perfom much better, esp. still showing
non-trivial power when using 1 minute data.

All in all, we emphasize the need for sparse sampling: all the tests’ power is
very poor for frequencies beyond one minute, so that in order to be able to
detect gradual jumps, sparse sampling is a must. However, sparse sampling
brings about a loss in efficiency, may violate the statistician’s principle of
using all available data, and comes at the cost of not being able to detect
very small jumps, as this would necessitate the use of high frequencies. In
the next sections, we will discuss a solution to this dilemma, the use of
moderately sampled intradaily highs and lows.

5 A Non-Chartist View on the Informational

Content of Candlestick Charts

Intradaily data of moderate frequency, say 5 or 10 minutes, are often avail-
able at quite reasonable prices. In many cases, it is possible to acquire
intradaily OHLC data, i.e. in addition to log-prices p i

N
on some equidistant

grid 0, 1
N
, . . . , 1 ([0, 1] denoting the daily trading interval), we are also given

intradaily highs (p∗)i,N and lows (p∗)i,N :

(p∗)i,N := sup
i−1
N

6t6 i
N

pt, (p∗)i,N := inf
i−1
N

6t6 i
N

pt . (33)

Then we have four log-prices in every subinterval [ i−1
N
, i
N

]:

• opening price p i−1
N

,

• closing price p i
N

,

• highest price (p∗)i,N ,

30For details, see Balter & Klößner (2010).
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• and lowest price (p∗)i,N .

These can be visualized by a method quite popular among chartists, the
so-called candlestick charts (see Figures 7 and 8). They are constructed by
applying the following procedure to every subinterval:

• plot the candlestick’s body, i.e. a rectangular box whose lower (upper)
coordinate is given by the minimum (maximum) of the subinterval’s
opening and closing price,

• colour the rectangle in green (or blue) for upward movements, i.e. when
closing price exceeds opening price, and in red for downward move-
ments, i.e. when closing price is smaller than opening price,

• draw the upper wick, i.e. atop of the rectangle, draw a line whose upper
coordinate is given by the highest price,

• draw the lower wick, i.e. beneath the rectangle, draw a line whose lower
coordinate is given by the lowest price.

We will refrain from discussing the merits ascribed to candlesticks by techni-
cal analysts, but instead concentrate on the informational content of candle-
sticks with respect to diffusive price behaviour and jumps. Figure 7 shows
simulated candlesticks for the most simple diffusion process, namely a Brow-
nian motion. It reveals that for a diffusive process the candlesticks can take
a lot of different forms: a large body with quite small wicks like the one at
09:55 a.m., a very small body with large wicks like the one at 10:05 a.m.,
candlesticks with a small and a long wick like the ones at 10:00 a.m. and
10:10 a.m., etc. However, for a continuous price process (with only moderate
drift), it is very unlikely to see a candlestick with a huge body and almost no
wicks, the form that we expect to observe in case of a (large) jump (cf. the
candlestick at 1:15 p.m. in Figure 8). In order to discuss the reason under-
lying this observation, we will now start to analyze diffusion processes more
thoroughly: to that end, assume that log-prices p exhibit no jumps, i.e.

pt = p0 +

t∫
0

µudu+

t∫
0

σudWu. (34)

For t ∈ [ i−1
N
, i
N

], we will then have

pt = p i−1
N

+

t∫
i−1
N

µudu+

t∫
i−1
N

σudWu. (35)
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Rescaling time as τ :=
t− i−1

N
1
N

∈ [0, 1], we get using

µ̃τ := µ i−1
N

+ τ
N
, σ̃τ := σ i−1

N
+ τ
N

(36)

and the Brownian motion

W̃τ :=
√
N
(
W i−1

N
+ τ
N
−W i−1

N

)
(τ ∈ [0, 1]) (37)

the following formula:

pt − p i−1
N

=
1√
N

 1√
N

τ∫
0

µ̃udu+

τ∫
0

σ̃udW̃u.

 (38)

In fact, (38) is at the heart of high-frequency volatility measurement: it
shows that asymptotically for ever higher frequencies, i.e. for N approaching
infinity, returns are of order 1√

N
and essentially determined by prices’ diffusive

part, while the drift’s influence vanishes due to the additional factor 1√
N

in front of the first integral in (38). As a consequence of (38), for most
applications one can proceed assuming locally constant volatility as well as
absent drift31. We will follow the same strategy here, setting µ ≡ 0 and,
within subintervals, σt ≡ σ, for derivations and motivations. We therefore
have the following simplified version of (38):

pt − p i−1
N
≈
σ i−1

N√
N
W̃τ . (39)

Approximately, this gives

p i
N
≈ p i−1

N
+
σ i−1

N√
N
W̃1, (40)

(p∗)i,N ≈ p i−1
N

+
σ i−1

N√
N
W̃ ∗, (41)

(p∗)i,N ≈ p i−1
N

+
σ i−1

N√
N
W̃∗, (42)

with
W̃ ∗ := sup

06t61
W̃t, W̃∗ := inf

06t61
W̃t. (43)

31Of course, this approach requires some mathematics, tackled brilliantly by Mykland
& Zhang (2009).
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For the candlestick’s body’s length bi,N , the upper and lower wicks’ lengths
uwi,N and lwi,N , we get:

bi,N = |p i
N
− p i−1

N
| ≈

σ i−1
N√
N
|W̃1|, (44)

uwi,N = (p∗)i,N −max(p i−1
N
, p i

N
) ≈

σ i−1
N√
N

(
W̃ ∗ −max(W̃1, 0)

)
, (45)

lwi,N = min(p i−1
N
, p i

N
)− (p∗)i,N ≈

σ i−1
N√
N

(
min(W̃1, 0)− W̃∗

)
(46)

(44)-(46) in particular show that for not too small frequencies, the sizes of
the candlestick’s body and wicks are up to a scaling factor determined by cer-
tain functions of the triple (W1,W

∗,W∗) of terminal, maximal, and miminal
value of a Brownian motion, the distribution of which is given in Borodin &
Salminen (2002). It is precisely this distribution which makes occurences of
candlesticks with huge body but tiny wicks quite improbable in the absence
of jumps.

We will now study how (44)-(46) change when there is an economic jump
within ] i−1

N
, i
N

[: we assume that between times tJ >
i−1
N

and tJ + ∆t <
i
N

log-prices ’jump’ from ptJ− by ∆ to ptJ+∆t = ptJ− + ∆.32 Introducing the
notations

T1 :=
tJ − i−1

N
1
N

, T2 :=
tJ + ∆t − i−1

N
1
N

, (0 < T1 6 T2 < 1) (47)

σl := σtJ−, σr := σtJ+∆t , (48)

and the independent Brownian motions

W l
τ :=

√
N

T1

(
W i−1

N
+
T1
N
τ
−W i−1

N

)
(τ ∈ [0, 1]), (49)

W r
τ :=

√
N

1− T2

(
W
tJ+∆t+

1−T2
N

τ
−WtJ+∆t

)
(τ ∈ [0, 1]), (50)

we then have

pt ≈


p i−1

N
+ σl

√
T1

N
W l

N
T1

(t− i−1
N

)
, i−1

N
6 t < tJ

p i−1
N

+ σl

√
T1

N
W l

1 + ∆ + σr

√
1−T2

N
W r

N
1−T2

(t−(tJ+∆t))
, tJ + ∆t 6 t 6 i

N

.

(51)

32∆t = 0 delivers the case of a mathematical jump, while ∆t > 0 for a gradual jump.
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As long as we do not specify the exact mathematical nature of the economic
jump, we do not have a formula for pt ’during’ the jump, i.e. for tJ 6 t < tJ +
∆t. However, at least approximately, we may assume that pt is between ptJ−
and ptJ+∆t . If the jump size ∆ is not too small in comparison to σl√

N
, σr√

N
33,

a positive jump ∆ > 0 will induce

p i
N
≈ p i−1

N
+ σl

√
T1

N
W l

1 + ∆ + σr

√
1− T2

N
W r

1 , (52)

(p∗)i,N ≈ p i−1
N

+ σl

√
T1

N
W l

1 + ∆ + σr

√
1− T2

N
(W r)∗, (53)

(p∗)i,N ≈ p i−1
N

+ σl

√
T1

N
(W l)∗, (54)

while for a negative jump ∆ < 0:

p i
N
≈ p i−1

N
+ σl

√
T1

N
W l

1 + ∆ + σr

√
1− T2

N
W r

1 , (55)

(p∗)i,N ≈ p i−1
N

+ σl

√
T1

N
(W l)∗, (56)

(p∗)i,N ≈ p i−1
N

+ σl

√
T1

N
W l

1 + ∆ + σr

√
1− T2

N
(W r)∗. (57)

This implies for the lengths of the candlestick’s body and wicks:

bi,N ≈

∣∣∣∣∣σl
√
T1

N
W l

1 + ∆ + σr

√
1− T2

N
W r

1

∣∣∣∣∣ ≈ |∆|, (58)

uwi,N ≈


σr

√
1−T2

N
((W r)∗ −W r

1 ) , ∆ > 0

σl

√
T1

N
(W l)∗ , ∆ < 0

, (59)

lwi,N ≈


σl

√
T1

N
(−(W l)∗) , ∆ > 0

σr

√
1−T2

N
(W r

1 − (W r)∗) , ∆ < 0
. (60)

From (58)-(60), we find that a jump causes the candlestick to have a rather
large body of length |∆|, while both wicks are essentially unaffected by jumps,
as a comparison of (45), (46) with (59), (60) shows.

33For a more thorough discussion concerning the jump size necessary for being detected,
see Lee & Ploberger (2009).
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Both for the theoretical reasons and the empirical facts given above it is
therefore possible to use intradaily OHLC data and candlestick charts for
inference on the presence of economic jumps, because

• large wicks, as compared to the candlestick’s body, indicate diffusive
behaviour in the absence of jumps,

• a large body, in combination with tiny wicks, indicates a jump.

In the following, we will use these facts to construct estimators that can
disentangle variation into diffusive volatility and volatility due to jumps.

6 Disentangling Diffusive Volatility and Eco-

nomic Jumps

6.1 Estimation in the Presence of Large Jumps

With the insights of the previous section, it is obvious that we should ex-
ploit the different behaviour of the candlestick’s body and wicks in order to
disentangle diffusive movements from jumps. Before developing estimators
for SSJ, SSpJ, and SSnJ, we first construct a very jump-robust estimator of
diffusive volatility

IVi,N :=

i
N∫

i−1
N

σ2
t dt (61)

within subperiod [ i−1
N
, i
N

]. To this end, we make use of upper and lower wick
lengths uwi,N , lwi,N , while disregarding the body length bi,N , as only the
wicks’ lengths are robust to the presence of jumps. To estimate IVi,N , we
consider quadratic functions of the upper and lower wicks’ lengths uwi,N and
lwi,N , i.e. IVi,N will be estimated by a linear combination of uw2

i,N , lw2
i,N ,

and uwi,N lwi,N .

From Klößner (2009) and (45), (46), we can infer that the estimators34

4 uw2
i , 4 lw2

i ,
4

8 log(2)− 5
lwi uwi (62)

are unbiased for IVi whenever there are no jumps and the approximation in
(45), (46) holds exactly35. In this case, it can also be shown that the optimal

34For notational simplicity, we from now on suppress the index N .
35This will especially be true when p is Brownian motion.
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linear combination of the aforementioned estimators is given by

ÎV
(l)

i := 1.3227 uw2
i +1.3227 lw2

i +2.4847 uwi lwi, (63)

where ’optimal’ means that under all linear combinations of the estimators

(62), consistent for IVi, ÎV
(l)

i has smallest variance, namely 0.7244
σ4
i−1
N

N2 . No-

tice that ÎV
(l)

i is by construction an estimator for IVi =

i−1
N∫

i−1
N

σ2
t dt, implying

that N ÎV
(l)

i might be used to estimate spot volatility σ2 in [ i−1
N
, i
N

].

We now turn to the estimation of

SSJi :=
∑

t∈[ i−1
N
, i
N

[

∆2
t , (64)

the sum of squared jumps during [ i−1
N
, i
N

[. From (58), we find that SSJi
should be estimated by the squared body length b2

i , if [ i−1
N
, i
N

[ contains a
large economic jump. However, when looking for an estimator for SSJi, we
must also make sure that the estimator behaves appropriately in the absence
of jumps, when body length bi is essentially given by (44). Unfortunately,
(44) shows that b2

i will approximately estimate IVi when there are no jumps
during [ i−1

N
, i
N

[. So we are in a dilemma: in the presence of a large jump, we
would like to use b2

i as an estimate of SSJi, but in the absence of jumps, this
produces too high values, as it then estimates IVi > 0, which is especially
bad if we sum up estimators over subperiods, which is the natural way to
come up with estimates of daily SSJ. The solution is to decrease b2

i in such
a way that the estimator will have vanishing mean and as small as possible
variance in the absence of jumps, while essentially measuring ∆2 for large
economic jumps. This leads to the following estimator:

ŜSJ
(l)

i := b2
i − 1.4383 uw2

i −1.4383 lw2
i −2.0605 uwi lwi, (65)

whose mean and variance are essentially 0 and 3.7474
σ4
i−1
N

N2 , resp., in the ab-
sence of jumps.

In order to estimate the squared positive jumps’ sum

SSpJi :=
∑

t∈[ i−1
N
, i
N

[

1∆t>0∆2
t , (66)
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we have to distinguish between positive and negative returns, i.e. between
ri > 0 and ri < 0. Again, we can not just use 1ri>0 b

2
i , as this estimator

will tend to estimate 1
2

IVi in the absence of jumps. Similar considerations
as above give

ŜSpJ
(l)

i :=

 b2
i − 3.2047 uw2

i −3.2047 lw2
i −3.0301 uwi lwi , ri > 0

1.7663 uw2
i +1.7663 lw2

i +0.9697 uwi lwi , ri < 0
, (67)

with mean and variance essentially 0 and 4.9360
σ4
i−1
N

N2 , resp., in the absence
of jumps.

In an analogous way,

SSnJi :=
∑

t∈[ i−1
N
, i
N

[

1∆t<0∆2
t (68)

is estimated by

ŜSnJ
(l)

i :=

 1.7663 uw2
i +1.7663 lw2

i +0.9697 uwi lwi , ri < 0

b2
i − 3.2047 uw2

i −3.2047 lw2
i −3.0301 uwi lwi , ri > 0

, (69)

with mean and variance essentially 0 and 4.9360
σ4
i−1
N

N2 , resp., in the absence
of jumps.

In order to estimate daily quantities IV, SSJ, SSpJ, and SSnJ, we just sum
up the contributions of all subperiods:

ÎV
(l)

:=
N∑
i=1

ÎV
(l)

i , (70)

ŜSJ
(l)

:=
N∑
i=1

ŜSJ
(l)

i , (71)

ŜSpJ
(l)

:=
N∑
i=1

ŜSpJ
(l)

i , (72)

ŜSnJ
(l)

:=
N∑
i=1

ŜSnJ
(l)

i . (73)

For these estimators, it is possible to write down a central limit theorem
for N → ∞, even in the presence of mathematical jumps. However, the
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CLT crucially depends on the jumps being mathematical jumps, i.e. for the
reasons discussed earlier, too high frequencies will result in gradual jumps
being distributed among several subintervals, thereby rendering jump mea-
surement inappropriate. We therefore refrain from discussing the CLT here
and refer the interested reader to Klößner (2009).

6.2 Estimation in the Presence of Moderate Jumps

We now consider again the issue of estimating IVi: the estimator ÎV
(l)

i makes
only use of the wicks’ lengths, for the sake of robustness with respect to

jumps. In particular, ÎV
(l)

i does not include products of body and wicks’
lengths, which will be small for moderate jumps as multiplication by a wick’s
length dampens the jump’s influence on the body. Incorporating these prod-
ucts brings about a significant reduction in variance in the absence of jumps:

while ÎV
(l)

i has a variance of approximately 0.7244
σ4
i−1
N

N2 , we can come up with

a new estimator ÎV
(m)

i , whose approximate variance in the absence of jumps

is only 0.2921
σ4
i−1
N

N2 :

ÎV
(m)

i := 0.4416 (uw2
i + lw2

i ) + 1.3851 uwi lwi +1.1809 (uwi bi + lwi bi). (74)

In a similar way, estimators for SSJi, SSpJi, and SSnJi can be constructed:

ŜSJ
(m)

i := 0.6576 (uw2
i + lw2

i ) + 0.5552 uwi lwi−2.8089 (uwi bi + lwi bi) + b2
i ,

(75)

with mean and variance given by 0 and 1.3014
σ4
i−1
N

N2 , resp., in the absence of
jumps, and

ŜSpJ
(m)

i :=



b2
i + 0.7706 (uw2

i + lw2
i ) + 0.7394 uwi lwi

−3.1847 (uwi bi + lwi bi) , ri > 0

−0.1130 (uw2
i + lw2

i )− 0.1842 uwi lwi

+0.3758 (uwi bi + lwi bi) , ri < 0

, (76)

ŜSnJ
(m)

i :=



−0.1130 (uw2
i + lw2

i )− 0.1842 uwi lwi

+0.3758 (uwi bi + lwi bi) , ri > 0

b2
i + 0.7706 (uw2

i + lw2
i ) + 0.7394 uwi lwi

−3.1847 (uwi bi + lwi bi) , ri < 0

, (77)
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which both have approximate mean and variance of 0 and 0.7071
σ4
i−1
N

N2 , resp.,
in the absence of jumps.

For these new estimators, it is also possible to construct estimators ÎV
(m)

,

ŜSJ
(m)

, ŜSpJ
(m)

, and ŜSnJ
(m)

for daily quantities IV, SSJ, SSpJ, and SSnJ,
and to derive a CLT for these estimators. We will refrain from discussing
these matters, however, for the same reasons as given above.

To see these estimators at work, let us have a look at Figures 3 and 4 again:
these contrast the traditional estimators of SSJ with the new estimators

ŜSJ
(l)

and ŜSJ
(m)

. While it is evident that the new estimators do a much

better job than the old ones, it can also be seen that ŜSJ
(l)

performs slightly

better than ŜSJ
(m)

. Another interesting fact is the decreasing behaviour of
the estimators for (too) high frequencies, stemming from the gradual nature
of the jump and necessitating moderate frequencies for the jump to be ade-
quately measured.

We now discuss the new estimators’ performance in the Monte Carlo exper-
iment described above, where we have simulated 30,000 paths of Brownian

motion subjected to gradual jumps36. Table 2 (p. 41) shows that ÎV
(l)

, being

solely based on wicks’ lengths, is unbiased for all frequencies, while ÎV
(m)

has
a small positive bias, which becomes negligible for high frequencies. Com-

paring ÎV
(l)

, ÎV
(m)

to standard estimators shows the superior properties of
the new estimators: in the high volatility setting, their performance at fre-
quencies of 10 or 15 minutes is comparable to that of the old estimators at
the 1 minute frequency, while in the low volatility setting, the new estima-
tors sampled every 30 minutes even outperform the old ones sampled at their
optimal frequency37.

All in all, ÎV
(l)

and ÎV
(m)

are excellent estimators for diffusive volatility IV,
both at high and moderate frequencies, due to their very effective using of
intradaily highs and lows.

The estimation of volatility due to gradual jumps turns out to be much

harder, as Tables 3-5 (p. 42, 43) reveal: ŜSJ
(l)

achieves a significant reduc-
tion of bias, esp. for moderate frequencies of 10 or 15 minutes, however, its

36See Subsection 4.3.
37Despite these results, sampling frequency should not be chosen too small in practice,

as intradaily fluctuations of volatility could then no longer be captured.
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drawback is the relatively high variance, which makes this estimator unneces-

sarily volatile in the absence of jumps. ŜSJ
(m)

performs much better in terms

of variance, admittedly at the cost of a higher bias than ŜSJ
(l)

. In the end,
both estimators perform similarly in terms of RMSE, improving estimation
of SSJ as compared to prevalent estimators. However, further efficieny gains

would be desirable, which may possibly be achieved by combining ŜSJ
(l)

and

ŜSJ
(m)

. The same assertions hold true with respect to the estimation of SSpJ
and SSnJ.

Summing up, the new estimators do an outstanding job in the estimation of
diffusive volatility IV, improve the estimation of SSJ, and make it possible
to estimate SSpJ and SSnJ. It would be desirable to further improve the
estimation of volatility due to gradual jumps, for instance by combining

ŜSJ
(l)

and ŜSJ
(m)

, or by using subsampled versions of these estimators. This,
however, is left for future research.

6.3 Testing for the Presence of (Positive, Negative)
Jumps

Both the theoretical results in Subsection 4.2 as well as Figure 5 show that
only the relatively new tests by Jiang & Oomen (2008) and Lee & Ploberger
(2009) have significant power against gradual jumps, while the tests by Aı̈t-
Sahalia & Jacod (2009b) and Barndorff-Nielsen & Shephard (2006) are es-
sentially unable to detect these economic jumps. However, for moderate
frequencies, all these tests suffer from quite substantial size distortions when
spot volatility σ2

t exhibits intradaily variation38, be it a deterministic diurnal
pattern in volatility or stochastically varying volatility. Comparing Figure
5 to Figure 6 shows how power is severly reduced when using critical val-
ues obtained from simulating 30,000 paths of a two-factor stochastic volatil-
ity model without jumps. Therefore, in a related paper, Balter & Klößner
(2010) developed jump tests which, to the author’s best knowledge, are the
only tests for jumps that are both capable of capturing gradual jumps and
robust to heavy fluctuations in volatility. As these are also based on sparse
sampling using intradaily highs and lows, we will shortly describe their con-
struction, again referring the reader interested in more details to Balter &
Klößner (2010). These tests, which can also separately detect positive and

negative jumps, are build on the estimators ŜSJ
(m)

for SSJ, ŜSpJ
(t)

for SSpJ,

38For details on the following as well as for testing for jumps under high volatility of
volatility, we refer the reader to Balter & Klößner (2010).
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and ŜSnJ
(t)

for SSnJ, where ŜSpJ
(t)

and ŜSnJ
(t)

are given by the sums of

ŜSpJ
(t)

i :=

 1.3982 (uw2
i + lw2

i )− 3.968 bi(uwi + lwi)
+2.0902 uwi lwi +b

2
i , ri > 0

0 , ri < 0
, (78)

ŜSnJ
(t)

i :=


0 , ri > 0

1.3982 (uw2
i + lw2

i )− 3.968 bi(uwi + lwi)
+2.0902 uwi lwi +b

2
i , ri < 0

(79)

over all intradaily subperiods. Under suitable conditions, with ÎQ a consistent

estimator of IQ :=
1∫
0

σ4
t dt, the test statistics

T̃J :=
√
N

N∑
i=1

ŜSJ
(m)

i√
1.3014 ÎQ

, T̃Jp :=
√
N

N∑
i=1

ŜSpJ
(t)

i√
0.8602 ÎQ

, T̃Jn :=
√
N

N∑
i=1

ŜSnJ
(t)

i√
0.8602 ÎQ

(80)
are asymptotically standard normal in the absence of mathematical (posi-
tive, negative) jumps. For these tests to be able to detect gradual jumps,
they have to be applied to moderately sampled data, which renders their
approximation by a standard normal distribution more or less inappropriate,
especially when volatility is changing fast. Balter & Klößner (2010) cir-
cumvent this problem by replacing the standard normal distribition in (80)
by Pearson distributions, with the approximating distribution’s parameters
computed on a day by day basis, taking into account the variation of in-
traday volatility, as measured by the Gini coefficient of intradaily estimates

ÎV
(m)

i .39 Figures 5 and 6 show the superior power of T̃J, esp. when volatility
is varying heavily. Comoparing these figures, it also becomes evident that
the new test is the only one for which critical values under Brownian motion
are essentially the same as under high volatility of volatility.

7 Empirical Application

As we have already documented by Figures 3 and 4, the new estimators ŜSJ
(l)

and ŜSJ
(m)

do a good job in capturing the economic jumps in DJIA and GE

on January 3, 2001. Using the estimators ÎV
(l)

i,N , ŜSJ
(l)

i,N , ŜSpJ
(l)

i,N , and ŜSnJ
(l)

i,N ,

39For details see Balter & Klößner (2010).
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it is possible to have a look at the behavior of both diffusive volatility and
jumps within the day, see Figure 9.40 It is easy to locate the timing of the

jump, shortly after 1 p.m., by inspecting the intradaily estimates ŜSJ
(l)

i,N of

the jumps’ contribution to volatility or the corresponding estimates ŜSpJ
(l)

i,N

for positive jumps, while the contribution of negative jumps, estimated by

ŜSnJ
(l)

i,N , meanders around 0. Another interesting insight we can infer from

Figure 9 is the increase in diffusive volatility ÎV
(l)

i,N following immediately
after the jump.
Figure 10 shows the analogon to Figure 9 for the correspondig estimators
suited to moderate jumps. Although the jump is rather large, these estima-
tors still work properly, with the additional benefit of less variation in the
estimates, as can be seen in particular by looking at the estimates of SSnJi,N ,
which are much less volatile than their counterparts in Figure 9, as predicted
by theory.

With a sample of several days, it is also possible to compute diurnal pat-
terns for the intradaily estimates of volatility due to diffusion, positive, and
negative jumps. For DJIA, this has been done using 5 minutes OHLC data
of DJIA ranging from January 2001 to December 2006. The results are dis-
played in Figures 11 and 12: diffusive volatility as well as jump activity are
by far highest at opening time and exhibit a U-shaped pattern after opening
with an additional spike at 10 a.m., probably due to occasional news releases
at that time.
The U-shaped diurnal pattern in volatility testifies volatility’s changing over
time. To measure the intraday variation of volatility, Balter & Klößner (2010)

compute the Gini coefficients of ÎVi,N on a daily basis. Figure 13 displays
the density of these Gini coefficients for different data generating processes:

• Brownian motion,

• Brownian motion with a deterministic diurnal volatility pattern ap-
proximating empirically observed U-shaped volatility:

σ2
t = σ2

0

(
23

36
+ 4 (t− 7

12
)2

)
(t ∈ [0, 1]),

• Merton jump-diffusions with variance of the jumps equal to 5% and
20% of squared volatility, resp.,

40For all the figures presented in this section, similar results for other shares are available
from the author upon request.
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• Brownian motion with gradual jumps,

• the two-factor stochastic volatility model SV2F used in Huang & Tauchen
(2005) and Balter & Klößner (2010),

• DJIA from 2001 to 2006,

• and GE from 2001 to 2008.

Figure 13 tells us that both mathematical and economic jumps induce only a
small increase in estimated Gini coefficients, while imposing a diurnal volatil-
ity pattern has a slightly stronger effect, albeit it can not explain the empir-
ically observed Gini coefficients of GE and DJIA41. For Gini coefficients of
intradaily volatility estimates to behave similarly to empirical ones, incorpo-
rating high volatility of volatility, as e.g. in the SV2F model, is indispensable.
However, as already mentioned earlier, with the exception of the tests by Bal-
ter & Klößner (2010), all test procedures for jumps suffer from severe size
distortions when volatility fluctuates heavily. In Figures 14 and 15, we there-
fore not only present the empirical rejection rates for all the tests discussed
in this paper, but also the rejection rates resulting from the use of critical
values obtained from simulating 30,000 paths of the SV2F model.
With respect to data, we emphasize that in contrast to other researchers, we
did not leave out data from the first or last minutes of trading time, which
was 9:30 a.m. to 4 p.m., entailing N = 78 when working with 5 minutes
frequency and N = 39 when aggregating to 10 minutes data. This is most
probably the reason for the comparatively low empirical jump detection rate
of the Lee/Ploberger test, which in contrast to the other tests can by its
construction not detect jumps occuring during the first l subperiods, which
comprise 45 (90) minutes for 5 minutes data when using l = 2 lnN (l =
4 lnN) and even 80 (150) minutes when sampling every 10 minutes. This
effect is quite severe due to the high jump activity at market opening and at
10 a.m., as revealed by the diurnal patterns in Figures 11 and 12, resulting
in this test being the one with lowest empirical jump detection rate.
As we have already pointed out in Section 4.2, gradual and mathematical
jumps tend to cancel out each other in the computation of the Barndorff-
Nielsen/Shephard and Aı̈t-Sahalia/Jacod test statistics, so that it is no won-
der that we find these tests’ detection rates to be above that of the Lee/Plo-
berger test, but well below the one of the Jiang/Oomen test42.

41Other assets induce similar Gini coefficients.
42This effect becomes much less prominent when size-adjusting is applied, as the

Jiang/Oomen test has the largest size distortion of all tests considered here, cf. Balter
& Klößner (2010).
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The detection rate of the test by Balter & Klößner (2010) is by far the high-
est, esp. after size-adjusting the results. The reason presumably is that this
test is unaffected by all the above mentioned shortcomings: every subperiod
is taken care of, gradual and mathematical jumps both enlarge the test statis-
tic, regardless of their sign. The last point, i.e. robustness to the jumps’ sign,
probably causes the higher detection rate than that of the Jiang/Oomen test,
which, as seen earlier, is shifted to the right by positive jumps, while shifted
to the left by negative jumps. Therefore, positive and negative jumps hap-
pening on the same day will at least partially cancel out each other, thereby
possibly resulting in the Jiang/Oomen test’s inability to detect the fact that
there have been jumps. This assertion can be backed up using the asym-
metric jump tests by Balter & Klößner (2010) to separately detect positive
and negative jumps: indeed, the proportion of days with significant43 jumps
of both sign to days with at least one significant jump always exceeds 13%,
varying with the asset and frequency under consideration.

For the sake of fairness, we emphasize that the test by Balter & Klößner
(2010) is the only one that makes use of and thus requires intradaily OHLC
data: it essentially uses a three times higher amount of data, i.e. not only the
conventional subperiod’s return, but also the subperiod’s highest and lowest
return, so that comparing this test to other tests is somewhat unfair, as using
more data should go hand in hand with improved power.

As a result of our objective to capture not only mathematical jumps, but
also economic ones, we find a dramatically higher contribution of jumps to
volatility than previously reported. In particular, we find that market in-
dexes exhibit much more jumps than individual stocks44. In this regard, we
emphasize the fact that the test’s ability to detect a jump on a particular day
is, apart from the frequency employed, essentially determined by the ratio of
jump size over spot volatility45. For this reason, it empirically happens that
a jump in DJIA is detected at the 1% level on November 16, 2006, although

the estimate ŜSJ
(l)

is very small at 0.03 %2, the detection made possible by

the very low volatility on that day, as estimated by ÎV
(l)

= 0.038 %2, corre-
sponding to an annual volatility of 3.082 %. In general, we find the volatility
of individual stocks to be significantly higher than that of market indexes: for

instance, the average daily estimate of diffusive volatility, as given by ÎV
(l)

,
equals 2.411 %2 for GE (corresponding to an annual volatility of 24.551 %),

43At the 5% significance level.
44Additional results for other assets are available from the author upon request.
45cf. Lee & Ploberger (2009).
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but only 0.282 %2 for DJIA (corresponding to an annual volatility of 8.396 %),
which explains why it is possible to detect more jumps for DJIA than for GE.

8 Concluding Remarks

In this paper, we have taken a closer look at economic jumps: from an
econometric point of view, these are jumps in prices, e.g. due to the re-
lease of important new information, while in the data, they may manifest
themselves not as instantaneous price movements, but rather as gradual,
possibly continuous adjustments of prices to their new level. Completely
overlooked by the econometric literature on measuring and detecting jumps
in high-frequency data, there is a significant amount of papers document-
ing this phenomenon, under the heading ’partial price adjustment’, stating
that it typically takes several minutes until important news are completely
incorporated into prices. This necessitates both sparse sampling as well as
the development of new estimators and tests for jumps, esp. since we have
documented that most existing estimators and tests do not cope well with
gradual jumps. In particular, when estimating SSJ, we recommend to sam-
ple at frequencies not exceeding 5 minutes, with the additional benefit of
avoiding microstructure noise contaminating the estimators46. By exploiting
the information hidden in intradaily highs and lows, we have constructed
new methods to disentangle volatility into its diffusive part and the contri-
butions of positive and negative jumps. These estimators can be computed
separately for each intradaily subperiod, thereby enabling us to locate jump
times within days, to compute diurnal patterns of diffusive volatility and
jump activity, and to compute measures for volatility of volatility.

As far as testing for jumps is concerned, using the test procedure of Bal-
ter & Klößner (2010), we have found rather large proportions of jump days,
both for GE and DJIA. The reader should notice, however, that these jumps
may by surprisingly small, yet still detectable thanks to the test’s remarkable
power, stemming to a substantial part from the use of intradaily highs and
lows. As the word ’jump’ is often associated with large price movements, it
would be useful to have a test that can detect days with ’large’ jumps, by
deciding on whether the sum SSJ of squared jumps exceeds a given threshold,
e.g. 1 %2. To develop such a test, we need a limit theory for some estimator of
SSJ in the presence of economic jumps, the derivation of which we postpone

46For the purpose of avoiding noise distorting estimators, using data sampled at a fre-
quency of 5 minutes seems to be quite popular recently, see e.g. Bollerslev et al. (2009b),
Todorov (2010).
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to future research.

Finally, we recall the reader’s attention to the following issue: as we have
pointed out several times, economic jumps might correspond to steep, yet
continuous price paths in the data, which we in accordance with Barndorff-
Nielsen et al. (2009) interpret as a noisy version of the unobserved discon-
tinuous true prices. Obviously, the same data might stem from a latent
continuous process exhibiting a rather large drift rate for a few minutes, and
it is impossible to decide purely from the data which of these possibilities
holds true. Therefore, the new procedures developed in this paper react sen-
sitively to intraday periods of large drift, which is sensible provided that these
periods are interpreted as belonging to jumps. For applications dictating an-
other view on these periods, other procedures will prove more appropriate:
for instance, testing for purely mathematical jumps, not treating periods of
large drift as jumps, should rather be done by applying the tests of Aı̈t-
Sahalia/Jacod or Barndorff-Nielsen/Shephard, as these tests treat periods of
large drift and mathematical jumps differently.
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High volatility (σ2 = 10−4):

1 min 3 min 5 min 10 min 15 min 30 min
BPV 0.080 0.169 0.185 0.201 0.223 0.273

(0.131) (0.255) (0.302) (0.383) (0.457) (0.641)

TPV 0.083 0.140 0.143 0.163 0.186 0.244
(0.139) (0.237) (0.278) (0.374) (0.458) (0.673)

MinRV 0.094 0.181 0.160 0.134 0.145 0.195
(0.161) (0.294) (0.322) (0.396) (0.475) (0.694)

MedRV 0.079 0.162 0.152 0.135 0.152 0.207
(0.134) (0.261) (0.296) (0.361) (0.436) (0.643)

ÎV
(l)

-0.009 -0.010 -0.010 -0.004 0.004 0.031
(0.044) (0.075) (0.096) (0.138) (0.171) (0.258)

ÎV
(m)

0.002 0.006 0.015 0.042 0.066 0.111
(0.027) (0.049) (0.066) (0.106) (0.141) (0.214)

Low volatility (σ2 = 9 · 10−6):

1 min 3 min 5 min 10 min 15 min 30 min
BPV 0.085 0.161 0.155 0.121 0.116 0.130

(0.101) (0.188) (0.186) (0.158) (0.157) (0.181)
TPV 0.089 0.106 0.076 0.066 0.070 0.087

(0.104) (0.127) (0.096) (0.092) (0.101) (0.134)
MinRV 0.124 0.188 0.135 0.075 0.058 0.050

(0.151) (0.226) (0.183) (0.137) (0.127) (0.129)
MedRV 0.086 0.170 0.134 0.075 0.059 0.054

(0.105) (0.207) (0.184) (0.139) (0.128) (0.133)

ÎV
(l)

-0.002 -0.001 -0.001 -0.001 0.000 0.004
(0.004) (0.007) (0.009) (0.013) (0.017) (0.029)

ÎV
(m)

0.000 0.003 0.006 0.018 0.027 0.047
(0.003) (0.006) (0.011) (0.024) (0.036) (0.061)

Table 2: Bias (and RMSE) of different estimators for IV (in %2)
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High volatility (σ2 = 10−4):

1 min 3 min 5 min 10 min 15 min 30 min
RV−BPV -0.423 -0.415 -0.361 -0.291 -0.280 -0.299

(0.490) (0.486) (0.438) (0.398) (0.414) (0.499)
RV−TPV -0.427 -0.385 -0.319 -0.253 -0.244 -0.270

(0.497) (0.459) (0.403) (0.390) (0.426) (0.555)
RV−MinRV -0.438 -0.426 -0.335 -0.224 -0.202 -0.222

(0.513) (0.517) (0.447) (0.418) (0.460) (0.614)
RV−MedRV -0.423 -0.408 -0.328 -0.225 -0.209 -0.233

(0.491) (0.487) (0.423) (0.384) (0.415) (0.547)

ŜSJ
(l)

-0.335 -0.235 -0.166 -0.087 -0.062 -0.060
(0.401) (0.333) (0.318) (0.389) (0.471) (0.682)

ŜSJ
(m)

-0.360 -0.275 -0.225 -0.197 -0.209 -0.249
(0.418) (0.341) (0.314) (0.355) (0.415) (0.549)

Low volatility (σ2 = 9 · 10−6):

1 min 3 min 5 min 10 min 15 min 30 min
RV−BPV -0.431 -0.408 -0.332 -0.212 -0.176 -0.158

(0.496) (0.473) (0.395) (0.290) (0.256) (0.239)
RV−TPV -0.435 -0.354 -0.253 -0.157 -0.130 -0.116

(0.500) (0.413) (0.303) (0.223) (0.204) (0.201)
RV−MinRV -0.470 -0.435 -0.312 -0.166 -0.118 -0.078

(0.543) (0.509) (0.386) (0.269) (0.233) (0.207)
RV−MedRV -0.432 -0.418 -0.311 -0.167 -0.119 -0.083

(0.497) (0.488) (0.386) (0.270) (0.234) (0.210)

ŜSJ
(l)

-0.345 -0.246 -0.176 -0.091 -0.061 -0.033
(0.397) (0.289) (0.216) (0.155) (0.144) (0.156)

ŜSJ
(m)

-0.349 -0.256 -0.194 -0.134 -0.124 -0.136
(0.401) (0.298) (0.234) (0.191) (0.189) (0.219)

Table 3: Bias (and RMSE) of different estimators for SSJ (in %2)
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High volatility (σ2 = 10−4):

1 min 3 min 5 min 10 min 15 min 30 min

ŜSpJ
(l)

-0.167 -0.117 -0.081 -0.042 -0.033 -0.033
(0.295) (0.280) (0.302) (0.401) (0.493) (0.722)

ŜSpJ
(m)

-0.179 -0.137 -0.112 -0.099 -0.103 -0.123
(0.292) (0.241) (0.227) (0.260) (0.307) (0.410)

Low volatility (σ2 = 9 · 10−6):

1 min 3 min 5 min 10 min 15 min 30 min

ŜSpJ
(l)

-0.172 -0.123 -0.088 -0.046 -0.031 -0.016
(0.276) (0.202) (0.153) (0.114) (0.109) (0.125)

ŜSpJ
(m)

-0.174 -0.128 -0.097 -0.067 -0.062 -0.068
(0.279) (0.208) (0.165) (0.137) (0.138) (0.163)

Table 4: Bias (and RMSE) of different estimators for SSpJ (in %2)

High volatility (σ2 = 10−4):

1 min 3 min 5 min 10 min 15 min 30 min

ŜSnJ
(l)

-0.168 -0.118 -0.086 -0.044 -0.030 -0.027
(0.297) (0.284) (0.305) (0.402) (0.493) (0.720)

ŜSnJ
(m)

-0.181 -0.138 -0.113 -0.098 -0.106 -0.126
(0.295) (0.244) (0.227) (0.263) (0.310) (0.412)

Low volatility (σ2 = 9 · 10−6):

1 min 3 min 5 min 10 min 15 min 30 min

ŜSnJ
(l)

-0.173 -0.123 -0.088 -0.045 -0.030 -0.016
(0.277) (0.202) (0.152) (0.113) (0.109) (0.126)

ŜSnJ
(m)

-0.175 -0.128 -0.097 -0.067 -0.062 -0.068
(0.280) (0.208) (0.164) (0.137) (0.138) (0.164)

Table 5: Bias of different estimators for SSnJ (in %2)
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Figure 1: DJIA, 2001-01-03
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Figure 3: DJIA: Existing (first two columns) and new (last column) estima-
tors for SSJ (in %2), 2001-01-03
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Figure 4: GE: Existing (first two columns) and new (last column) estimators
for SSJ (in %2), 2001-01-03
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Figure 5: Size-adjusted (w.r.t. Brownian motion) power of different tests for Brownian motion with gradual jumps
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Figure 6: Size-adjusted (w.r.t. two-factor stochastic volatility model) power of different tests for Brownian motion
with gradual jumps
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Figure 7: Candlestick chart for simulated exponential Brownian motion, frequency: 5 minutes
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Figure 8: Candlestick chart for DJIA, 2001-01-03, frequency: 5 minutes
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Figure 9: Intraday estimators suited to accomodate large jumps (in %2),
frequency: 5 minutes
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Figure 10: Intraday estimators suited to accomodate moderate jumps (in
%2), frequency: 5 minutes
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Figure 11: Diurnal patterns for intraday estimators suited to accomodate
large jumps (in %2). Depicted are the following quantiles: 25%, 50%, 75%,
90%, 95% (from red to magenta).
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Figure 12: Diurnal patterns for intraday estimators suited to accomodate
large jumps (in %2), with opening subperiod removed. Depicted are the
following quantiles: 25%, 50%, 75%, 90%, 95% (from red to magenta).
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Figure 13: Daily Gini coefficients of intraday spot variance, frequency: 5 minutes
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Figure 14: Empirical rejection rates for DJIA without (upper row) and with
(lower row) size adjustment (w.r.t. two-factor stochastic volatility model) for
different tests
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Figure 15: Empirical rejection rates for GE without (upper row) and with
(lower row) size adjustment (w.r.t. two-factor stochastic volatility model) for
different tests
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