

2nd Tutorial to Econometric Methods and Applications WS 2017/18

<u>Exercise 8</u> [2.5%]Consider the following simple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + u_i.$$

Explain and/or discuss the following notions:

- (a) model assumptions
- (b) regressand, regressor, and error term
- (c) depdendent and independent variable
- (d) regression line, intercept, slope
- (e) regression coefficient and estimated regression coefficient
- (f) ordinary least squares
- (g) What is the relation between the conditional expectation of Y and the regression line if the assumption $E(u_i|X_i) = 0$ is fulfilled?

Exercise 9 [2,5%]

Regressing average weekly salaries (AWS, in Euro) on workers' age (in years) yielded the following result:

$$\widehat{AWS} = 696.7 + 9.6 \cdot AGE, \quad R^2 = 0.023, \quad SER = 624.1.$$

- (a) Interpret the values 696.7 and 9.6.
- (b) What is the unit of *SER* (Euro? Years? No unit?)
- (c) Interpret the coefficient of determination.
- (d) What estimate does the model produce for 25 and 45 year old workers, respectively?
- (e) The average age of the workers in this study was 41.6 years. What was the average weekly salary in this study?

- (a) For the quantities $TSS = \sum_{i=1}^{n} (Y_i \overline{Y})^2$ (total sum of squares), $ESS = \sum_{i=1}^{n} (\hat{Y}_i \overline{Y})^2$ (explained sum of squares), and $SSR = \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$ (sum of squared residuals), show the relation TSS = ESS + SSR. How are these quantities related to the coefficient of determination?
- (b) Assume that in a regression, we find $\hat{\beta}_1 = 0$. What does this imply for the coefficient of determination?

<u>Exercise 11</u> [2,5%]

To study the effect of time pressure on results of exams, 400 students were randomly given either 90 or 120 minutes of time for tackling the exercises. The scores Y_i achieved by the students ($0 \le Y_i \le 100$) were then regressed on the amount of time X_i the students could spend ($X_i \in \{90, 120\}$) using the simple linear regression model $Y_i = \beta_0 + \beta_1 \cdot X_i + u_i$. The result of the regression was: $\hat{Y}_i = 49 + 0.24 \cdot X_i$.

- (a) Calculate the expected scores of students who had 90 (120) minutes at their disposal.
- (b) How would the results change if the two treatments (90 min, 120 min) were coded by a dummy variable taking the values 0 and 1?

Exercise 12 [2.5%]

Consider the simple linear regression model $Y_i = \beta_0 + \beta_1 X_i + u_i$.

- (a) Assume that the intercept β_0 is unnecessary, i.e. $\beta_0 = 0$ such that the true data generating process is $Y_i = \beta_1 X_i + u_i$.
 - (i) Show that the OLS estimator for β_1 given $\beta_0 = 0$ is given by $\tilde{\beta}_1 = \frac{\overline{XY}}{\overline{Y^2}}$.
 - (ii) Show that $\tilde{\beta}_1 = \frac{\overline{XY}}{\overline{X^2}}$ can be written as $\beta_1 + \frac{1}{n} \sum_{i=1}^n \frac{X_i}{\overline{X^2}} u_i$.
 - (iii) Show that, for homoskedastic errors, the variance of $\tilde{\beta}_1$ is equal to $\frac{\sigma_u^2}{nX^2}$. Compare this to $\frac{\sigma_u^2}{ns_X^2}$, the variance of the 'standard' estimator $\hat{\beta}_1 = \frac{s_{XY}}{s_X^2}$.
- (b) [facultative, additional 2.5%] Conduct an analogous analysis of the case of a spurious regressor, i.e. for the model Y_i = β₀ + u_i.